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CHAPTER 1

INTRODUCTION

1.1 Background and Objective

Considerable effort has historically been expended to model the

diffraction of wave fields using asymptotic and approximate methiods.

Over 130 references are cited in this report, and they represent only a

fraction of the total number in the literature. However, due to the

complexity of the phenomena, fundamental questions remain to be solved.

Even the most respected diffraction theories exhibit some dramatic

failures in surprisingly simple cases. For example, the Freedman

(1962a, 1962b) theory provides a method for resolving backscattered

echos in time and space that has been considered important enough to be

included in Albers' (1972, pp. 246-268) collection of benchmark papers

in underwater acoustics. However, the theory includes some questionable

mathematical developments that have not been critically examined, and

the few existing comparisons between prediction and experiment

(Dunsiger, 1968, 1970) are inconclusive at best. As a second example,

the Keller extended-geometrical prediction for backscattering from a

thin spheroid is incorrect by at least one order of magnitude for

reasons that are unresolved. This has led to a loss of confidence in

the otherwise successful geometrical methods. A final example concerns

Franz-type creeping waves. This surface-wave phenomenon attracted

considerable attention that apparently led to conclusive explanations

approximately 10 years ago. However, because creeping waves have been

observed so rarely, serious doubts about the concept have arisen.



The problems with modern diffraction theories illustrated 5v these

examples can be traced to a common cause: insufficient Knowledge about

the basic physics of diffraction. Thus, while mathematical techniq~ues

can be used to accurately model a given set of observed characteristics,

misleading or nonphysical conclusions are frequently drawn when the

predictions are analytically extrapolated (i.e., with no additional

knowledge of the physics) to slightly different conditions. The

likelihood that a given analytic model will be improperly interpreted is

enhanced by the complexity of the required analytic techniques and the

tendency of professionals to restrict their interests to either

theoretical or experimental research. In any case, before one develops

a diffraction model, a clear understanding of the basic physical

phenomena (i.e., physical intuition) should first be established.

For this study, the urge to develop new diffraction theories has

been avoided. Instead, the objective is to analyze the basic physical

phenomena on which existing theories are based. Thus, the present work

first identifies and then critically examines the problems and

assumptions of today's dominant diffraction theories. The approach used

for this examination involves careful, physical observation of basic

experiments designed specifically to aid in the development of physical

intuition. The procedure is a form of experimental analysis in which

the results of simple experiments are used to formulate further

experiments in an iterative fashion until an intuitive understanding of

the particular phenomenon is reached.
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1.2 Scope of the Study

The first task of this study was to review the popular diffraction

theories in order to isolate points that needed further clarification.

This was accomplished primarily by an extensive literature review that

is summarized in Section 1.3. For the Freedman theory, however, a

detailed analysis of the derivation was required because such an

evaluation does not appear in the literature. That theoretical analysis

is presented in Chapter 2. The second and larger task was to devise and

perform a series of experiments that would serve as informative test

cases for the problems and weaknesses identified in the first task. The

prolate spheroid served as a basic model for diffraction from smooth

surfaces. The effects examined include the origin and angular

dependence of the scattering components, the significance and nature of

the creeping waves, and the influence and interaction with small

obstructions on the smooth surface (Chapter 4). Other types of models

were used to examine both the directivity and frequency response of

edges and tips of various orders. These models included baffleg,

cylinders, cones, and cone variants (Chapter 5). Finally, to complete

the analysis of the Freedman theory begun in Chapter 2, the cylinder and

cone data in Chapter 5 were compared with equivalent theoretical

predictions.

The experimental analysis has been limited to a subset 'nf acoustic-

wave scattering (mostly backscattering) effects demonstrated by bodies

of convex geometry in an air medium. Thus, the scattered fields

observed are singly diffracted and scalar in nature, and all scattering

bodies are essentially rigid. Because of practical limitations,



farfield conditions for diffraction effects could not be obtained. :he

source and receiver were always far enough from the scatterer to assume

that any local, exponentially decaying fields had died out (i.e., in the

acoustic farfield). However, the wavefronts could not be considered as

planar, and differences in propagation-path losses between different

models or different parts of the same model occasionally had to be taken

into account.

Two different measurement techniques were used. Host of the

results are standard gated-pulse measurements, i.e., a transmitted tone

burst of finite length is scattered by a body and then measured during a

known time window with a aated receiver. The second measurement

technique is a long-wavelength imaging technique similar to standard

holography. In this technique, the monofrequency pressure field (either

pulsed or continuous) scattered by a body is measured at many points

within a large, rectangular aperture, and the originating field at the

surface of the scatterer is then reproduced by a numerical wave-

reconstruction process. Because the results of this new imaging

technique must be interpreted carefully, they are all presented

separately in Chapter 6 along with an explanation of the theoretical

basis for the technique and the required experimental equipment.

Some comments about the selection of experiments and presentation

of results are in order. First, because the goal of this study was to

understand rather than to verify hypotheses, each individual test was

preceded by a series of "insight experiments." These experiments

involved such simple techniques as manually positioning a model and

associated microphone while concurrently observing the results on an

*1h
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oscilloscope (see Section 3.4). Then, configurations that looked

interesting were examined more closely, and data were recorded for

analysis and presentation. Many of the final results presented in this

document were preceded by weeks or months of preliminary investigations.

Second, the individual data curves are presented in a form as close to

the original as possible. This has been done because the small

oscillations, asymmetries, etc. that occur in the data frequently

provide either insights into the phenomena or indications of the

confidence that should be accorded to the data. The frequency-response

plots could not be preserved in this form because they had to oe

manually adjusted to compensate for the loudspeaker's response. Third,

as a further interpretive aid, each plot contains a small figure

intended to describe unambiguously the configuration used in that

particular experiment. Thus, the results of this thesis have been

organized and presented to support both a broad reading to develop

insights and a more detailed examination of any cases of interest to the

particular reader.

1.3 Review of Related Work

Before the results of this work are discussed, it should be

informative to review from a broad perspective some of the major

theoretical and experimental developments in the study of diffraction.

The literature on the subject is too voluminous to permit a complete

review in this introduction; therefore, the description will be limited

to an outline of the past developments that were considered when

formulating the experimenits for this study. For additional information,



major works of a summary nature have been written by Bowman, Senior, and

Uslenghi (1969); James (1976); New, Andrews, Brill, Eisler, and 'beralL

(1974); Skudrzyk (1971); and Usienghi (1978).

The study of diffraction can be traced back to observations made

many centuries ago about the propagation of light and sound. Even tne

formal study of this phenomenon was evident as early as the 17th century

when Huyghens proposed the famous principle of wavefront construction

that bears his name. As early as 1881, Rayleigh applied the classical

normal-mode solution to the scattering from an infinite cylinder; in

1908, -ie applied the solution to a sphere. Since then, much progress

has been made toward improving both the applicability and numerical

suitability of various methods. The advent of radar and its attendant

problems in the period from 1940 to 1945 provided a significant boost to

the level of effort devoted to scattering problems, and this effort has

largely continued to the present day. Nevertheless, the fact that

scattering from very simple shapes still receives a lot of attention is

a good indication of the complexity of the subject.

1.3.1 Eigenfunction Method

Some of the earliest formal diffraction solutions were derived

using the method of eigenfunctions or normal modes. This method (as

applicable here) involves expressing the problem in a coordinate system

where the three-dimensional wave equation separates into three ordinary

differential equations, solving the three equations independently for

the characteristic modes, and forming the solution as a sum of these

modes. As already mentioned, the solutions for the infinite cylinder
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and sphere were formulated very early by Rayleigh (1881) and 'tie "9)8),

respectively. Spence (1948) derived an equivalent expansion for a

circular aperture as a limiting case of the oblate spheroid, and ne

later evaluated the eigenfunction solution for a prolate spheroid

(Spence & Granger, 1951). At about the same time, Horton and Karal

(1950) worked out the solution for a paraboloid of revolution. Shortly

thereafter, Siegel, Crispin, and Schensted (1955) derived the normal-

mode solution for the semi-infinite cone, while that for the elliptic

cylinder was not seriously studied until 1963 by Barakat.

An observation of the dates on which these eigenfunction solutions

were derived provides an indication of the relative benefits and

drawbacks of this method. The procedure is formally straightforward and

rigorous, but it is applicable only to bodies that are coordinate

surfaces in one of the eleven separable coordinate systems (only nine of

these are separable for vector problems). In addition, the separation

constants that are formed in the procedure appear simultaneously in more

than one of the "independent" solutions for all but the rectangular,

circular-cylindrical, and spherical coordinate systems. This fact,

coupled with the relatively slow convergence of the resulting series,

severely limits the practicality of eigenfunction solutions for
I V'j

numerical analysis. The relative complexity and the series form of the

wave functions also make it difficult to draw physical conclusions about

the results without extensive numerical computations.

Despite the difficulties, numerical analysis of eigenfunction

solutions has provided much useful data where exact solutions were

required or other solutions were not available. For example, Hickling
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(1958) used this procedure to show that the backscatter from similar-

sized bodies of various shapes (sphere, prclate spheroid, and circular

cylinder) is dependent on the body geometry even at relatively low

frequencies. The advent of desk calculators and, later, computers was

responsible for making these results feasible although time consuming.

Hickiing (1962, 1964) used the same method to evaluate some of the

earliest results of scattering from an elastic sphere. These results

included a very interesting theoretical study of pulse scattering

derived by Fourier transforming the eigenfunction solution. Most of the

reliable results for scattering from the prolate spheroid are also based

on eigenfunction techniques applied either directly or through

asymptotic evaluation of the mode functions (Andebura & Ostashevskii,

1974; Kleshchev & Sheiba, 1970; Lauchle, 1975a, 1975b; Senior, 196o).

1.3.2 Watson Transformation

An interesting and numerically useful result can be obtained from

the eigenfunction solution when the Watson (1918) transformation is

applied. This transformation involves representing the modal terms of

the solution as poles inside the contour of a complex integral, then

shifting the contour to produce a solution in terms of a new series of

poles that yields better convergence properties. Franz (1954) showed

that this transformation produces terms in the solutions for the sphere

and cylinder that can be interpreted as waves traveling around the

bodies on their surface: the "creeping waves" (see also Deppermann &

Franz, 1954; Franz & Deppermann, 1952; Uberall, Doolittle, & McNicholas,

1966). This new wave phenomenon has received considerable attention in

.. JAft
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the literature, and it is discussed in more jetail in ttnis introduction

in conjunction with Keller's geometrical diffraction theory. The Watson

transformation has been applied, with similar results, t n the

eigenfunction solutions for the elliptic cylinder (Leppington, 1967)

and, for one order of summation, to the prolate spheroid (Kleshchev,

1974).

1.3.3 Integral Solutions

In addition to the eigenfunction solution, another technique that

formally produces exact solutions is direct application of the well-

known Helmholtz-Huyghens radiation integral (see, for example, Skudrzyk,

1971, pp. 489-494). Utilization of this technique leads to an integral

equation that relates the wave amplitude at a field point to tne

amplitude and normal derivative of the wave field along any closed

boundary that envelopes the point. The method is rigorous, but it can

be solved directly only in very rare cases. Techniques for solving the

integral equation numerically by breaking the integral up into a finite

number of sums and solving the resulting system of equations on a

computer have been studied (see, for example, Copley, 1968; Schenck,

1968). However, this method is most important as the starting point for

many approximate, numerical methods, especially those that are concerned

with surface fields or currents on the body of a scatterer (see, for

example, Hong, 1967).

I



1.3.4 Asymptotic or Approximate Solutions

Because the exact formulations of the diffraction problem are

generally not suitable for obtaining quantitative results at any but ',he

lowest kL values (where L is a characteristic length), considerable

effort has been devoted to determining approximate solutions to the

problem. One of the most straightforward method-s uses normal-mode

solutions with one or more terms replaced by numerically simpler forms

that are analytically valid at designated limiting values of the

parameter. Other methods proposed exhibit considerable diversity and

ingenuity, but they have certain common features. The techniques often

begin with an exact formulation in either eigenfunction or integral

form. In addition, they may assume relationships based on heuristic or

formal representations of well-known solutions. For example, one often

sees the phase relationship in a solution assumed a priori to correspond

to geometric paths in an otherwise rigorous treatment in order to obtain

the solution in a form such as U(r) = exp(ikr) 1(r) (see, for example,

Brown, 1966; Hong, 1967). Because of the necessarily strong ties to

known results and methods, most of the asymptotic solutions given in the

literature apply to the same simple cases as do the more formal

solutions (although the practicality or applicable parameter range is

generally expanded). The heuristic assumptions sometimes make it

difficult to estimate convergence criteria and ranges of applicability.

Finally, it is not at all uncommon to find that different solutions are

required for different aspect angles, frequency ranges, shapes, etc. In

short, the asymptotic methods may require considerable ingenuity and

skill for their application to obtain a reliable prediction, but their



accuracy can be surprisingly good in certain, sometimes unpredictable,

cases.

1.3.5 Geometrical Optics

Perhaps the most obvious first approximation for short wavelengths

is classical geometrical optics (Born & Wolf, 1959, pp. 108-131). This

well-known method is based on the concept of rays with propagation

described by shortest-distance paths according to Fermat's principle and

conservation of energy within tubes of rays (see Figur2 1.1). It is

very useful when dealing with the short wavelengths encountered in

optics, but its usefulness is more limited for acoustics and radar

applications where the size of the wavelengths encountered are of the

same order of magnitude as the scatter ing objects.

1.3.6 Lundeburg-Kline Expansion

Lundeburg and Kline (see Kline, 1951) developed an asymptotic-

series solution in powers of 1/k in an attempt to assess the magnitude

of error involved in the geometrical-optics approximation. This

technique is especially appreciated, because it includes the

geometrical-optics solution as its first term and goes on to provide a

formal, rigorous procedure for deriving additional terms in the

solution. Keller, Lewis, and Seckler (1956) applied this basic method

to a wide variety of scattering problems in a paper that is frequently

referenced for accurate representations of specular scattering

mechanisms. They noted, however, that even this simple expansion is

difficult and lengthy to apply in many applications. An interesting



Figure 1.1 Ray tube of geometrical optics. A caustic occurs at those
points where one or both of the radii of curvature of the

wavefront vanish.
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result relating to this method was obtained by Darling and Senior

(1965). They found that the radius of convergence of this series

approximation for a thin spheroid is larger than that for the similar

sphere--a result that is contrary to assumptions commonly made.

1.3.7 Kirchhoff Approximation

One of the earliest and most important examples of approximate

diffraction techniques is based on assumptions first proposed by

Kirchhoff in the late 19th century (see, for example, Skudrzyk, 1971,

pp. 517-519). According to Kirchhoff, the field behind an aperture in a

plane (shadowed side) can be computed by means of an integral over the

aperture only. It must be assumed that (1) the field and its normal

derivative vanish behind the screen, and that (2) the field and its

normal derivative in the aperture are both identical with those for the

undisturbed incident field at the location of the aperture. This

approach was later modified by Rubinowicz (1924) to represent the

diffracted field as a line integral over the edge of the aperture (see

Skudrzyk, Hayek, & Stuart, 1973). The Kirchhoff method can also be

formulated for scattering from three-dimensional bodies, where it is

known as physical optics. In the latter case, each point on the

diffracting object is assumed to act as a small volume source in an

infinite plane baffle, where it scatters with a known reflection factor

into a space angle of 27.

The applicability of the Kirchhoff-Rubinowicz method has been

studied fairly extensively. Theoretical analyses (Leitner, 1949;

Spence, 1949) and experimental analyses (Wiener, 1949) have both shown
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that the field near the edge of an aperture differs considerably from

that assumed by Kirchhoff. However, they also show that the physical-

optics expressions work surprisingly well in their prediction of the

field at great distances from an aperture, although the accuracy is

degraded in some cases at angles away from the direct forward or

backward direction (Ross, 1966). The accuracy of the physical-optics

predictions for three-dimensional scatterers is more variable. Good

agreement has been reported for scattering from the tip of a semi-

infinite, electromagnetic cone (Siegel, Crispin, & Scensted, 1955) and

the curvature discontinuity of a cone-sphere (Senior, 1965), despite the

fact that the original assumptions are of questionable validity in these

cases. However, results from similar acoustic scatterers reported in

Chapte r 5 exhibit much poorer agreement between theory and experiment.

In general, the Kirchhoff method is considered to be an improvement over

geometrical optics, and Leizer (1966) has reported some limited success

in attempting to formulate a procedure for suitably modifying

geometrical-optics results with physical-optics corrections. This

approximate method must be used judiciously, though, because it is known

to predict contributions from the shadow boundary in cases where none

have been observed with either exact-theoretical or experimental

procedures.

1.3.8 Freedman Method of Echo Formation

A modified form of the Kirchhoff method was used by Freedman

(1962a, 1962b) in a study of the shapes of backscattered acoustic

pulses, a problem that is very important for target identification.
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Freedman's results show that an echo is composed of a number of discrete

"images" of the incident pulse. Using an analysis with coincident

source/receiver transducers at the origin of the coordinates, an

individual image pulse is generated wherever there is a discontinuity

with respect to range in the solid angle subtended by the scattering

body at a given range. An approximate procedure for evaluating this

type of solution as a sum of discrete area segments was proposed by

Neubauer (1963), and the original procedure was used by Gatkin,

Paramonova, and P'yanov (1972) to approximate the scattering by a rigid

spheroid. Freedman (1970a, 1970b, 1971, 1972, 1977) later generalized

the basic technique to handle transient radiation probiems.

The Freedman method is of particular interest because of its easily

evaluated results and its prediction of scattering mechanisms based on a

formal analytical procedure. However, it does not seem to have been

quantitatively analyzed to any significant extent in the literature

(see, however, Dunsiger, 1968, 1970). Thus, the method has received

further study in this thesis. The qualitative descriptions of scattered

pulse shapes provided by Freedman (1962a, 1962b, 1964) make interesting

reading, especially for those persons unfamiliar with the complex forms

encountered in experimental work. Similar analyses of echo shapes based

on exact theoretical studies (Hickling, 1962, 1964; Rudgers, 1969) and

experimental studies (for example, Barnard & McKinney, 1961; Hampton &

McKinney, 1961) have also been reported.



.3.9 Keller's Geometrical Theory of Diffraction

Perhaps the most promising and ingenious approach to the problem of

high-frequency asymptotic solutions for complex scattering objects was

developed by J. B. Keller in the mid-to-late 1950's (Keller, 1956, 1957,

1958, 1962; Levy & Keller, 1959). In discussing this technique, it is

important to separate the method itself from the actual implementation

that is continually evolving. The method is based on two assumptions:

(1) wave-propagation properties at a given point are determined solely

by the properties of the medium and the structure of the field in an

arbitrarily small neighborhood of the point; and (2) all fields, no

matter how they were produced, must have the same local structure, i.e.,

that of a plane wave (Keller, 1962). Having made these assumptions, one

can construct a solution for any complex shape by first breaking the

scattering object into a sufficient number of simple structures whose

properties are known and then matching the field between regions. The

solution in the locality of the simple structures is obtained from

"1canonical" problems, which are defined as the simplest boundary-value

problems that have the same local properties (field, media, geometry) as

the given structure. Keller and his colleagues have tried to develop

this concept into a complete method that is both formal and rigorous

rather than heuristic.

Keller's implementation of these assumptions is based directly on

the principles of geometrical optics with the addition of diffraction

rays. He defines three new laws associated with edge, vertex, and

grazing-surface diffraction. Thus, an incident ray striking an edge is

reflected in a manner similar to reflection from a plane but spreading
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in a complete arc around the edge to form a cone of rays (see Figure

1.2a). A similar result is postulated to occur at a vertex, where rays

now spread in a complete spherical pattern (Figure 1.2b). Note that the

terms edge and vertex refer not only to appropriate discontinuities in a

surface or edge but also to discontinuities in their derivatives. The

last diffraction ray is a surface ray that forms whenever an incident

ray impinges tangent to the scatterer surface. It then propagates along

the surface, continually directing new rays into the medium in a

direction tangent to the current path (Figure 1.2c). The ray paths

assumed for both the geometrical and diffracted rays are shortest paths

based on an extended concept of Fermat's principle, with the addition of

certain specified phase discontinuities (for example, at a caustic).

The edge and vertex rays are subjected to a multiplicative diffraction

coefficient at their formation but are otherwise described by

geometrical optics. The surface rays are described by three parameters:

a multiplicative diffraction coefficient at the points of formation and

reradiation, an exponential attenuation factor accounting for loss of

energy due to reradiation, and a factor to account for spreading on the

surface. All of these coefficients are determined by comparison with an

appropriate canonical problem.

Several general conclusions can be drawn about Keller's geometrical

theory of diffraction (GTD). One primary advantage is the fact that it

does not possess any case-limiting associations such as a requirement

for separation of variables. This gives GTD the very important benefit

of being applicable to an object of any shape; however, in practice, the

separation from specific simple geometries is not complete because of



L8

DIFFRACTED RAYS

DRA

RARAY

IINCIDENT

-EG RAY ~ DFFACE

RRAY

Figure 1.2 Geometric description of the three new types of diffraction
rays proposed by Keller, including (a) edge rays, (b) vertex
rays, and (c) surface rays.
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the requirement for applicable canonical problems. Futhermore,

solutions have been derived only for relatively simple objects because

of the complicated geometrical relations that are required to model more

complex shapes. Confidence in the method is aided by the extensive

efforts oi Keller and his colleagues to show that the GTD solutions

agree with the solutions of other formal methods in the asymptotic

limit. But, one must remember that some of this greement is enforced

by the canonical construction process. (The determination of

coefficients by comparison with canonical problems is usually made in

the asymptotic limit.) In addition, although the nature of the method

implies greater accuracy as the wavelength decreases in proportion to

the scatterer size, the heuristic construction process, which gives the

method its versatility, also exhibits the absence of rigorous criteria

for error analysis as well as the lack of a formal application

procedure. Thus, one must have at his command a large catalog of

individual coefficients and local solutions, and one must apply

considerable skill in constructing the total solution. Finally, the

complete method, as presently implemented, is based on geometrical

optics. This dependence brings along all the problems of the latter

method at caustics (Figure 1.1) and shadow boundaries.

In addition to the general considerations listed previously, the

accuracy of geometrical-diffraction-theory solutions is heavily

influenced by the applicability of the canonical problems used. The

construction procedure guarantees a match with the canonical proolems in

the asymptotic limit. Thus, the total solution can also be expected to

match in the asymptotic limit to at least the degree that the local-
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mechanism assumption is valid if the solution is derived with adequate

care and precision. However, the solution can be expected to be optimum

when the assumptions made about the propagation mechanisms correspond to

actual physical processes. This last conclusion should encourage

careful analytical and experimental consideration of the processes

involved.

The edge problem is probably the best understood of the Keller

canonical problems. The diffraction coefficients can be determined from

Sommerfeld's exact solutions for the half-plane or wedge (see Keller,

1962). Alternately, if impedance boundary conditions are desired, the

wedge solution of Xalyughinetz (1960) or the impedance-edge solution of

Kendig (1977) may be employed. Keller and Hansen (1965) have summarized

these results and compared them with some experimental results and with

other analytic formulations. This comparison generally confirms the

validity of the Keller edge solution--at least in those problems where

it has been utilized (see also Keller, 1961; Ross, 1966). The cone of

rays postulated to emanate from an edge has also been observed

experimentally (Senior & Uslenghi, 1972). Finally, higher-order

coefficients have been obtained for the edge at a discontinuity in

curvature (Albertsen & Christiansen, 1978; Senior, 1972; Weston, 1962,

1965), but these coefficients are based on canonical solutions that are

approximate rather than exact, as was the case for the previously

mentioned edge coefficients.

The canonical problems for corners and vertices are not nearly as

well developed as those for the edge. Kraus and Levine (1961) obtained

an eigenfunction solution for the elliptic cone that is capable of



producing a solution of the quarter-plane problem, but no diffraction

coefficients have been derived. The results that are available for the

vertex problem are also limited. The semi-infinite cone problem has

been evaluated, for example, by Siegel, Crispin, and Schensted (1955).

However, most of the geometrical-diffraction-theory results in the

literature either treat the vertex contribution as negligible in

comparison to more prominent ones (for example, scattering from the base

of a finite cone) or utilize a physical-optics approximation at the

vertex (Bechtel, 1965; Keller, 1960; Senior, 1965).

The surface rays postulated in the Keller geometrical theory of

diffraction were formulated based on the creeping waves of Franz (1954).

In this case, three characteristic parameters must be determined: The

diffraction coefficients, the attenuation factor, and the surface

spreading factor. In Keller's implementation, the diffraction

coefficients at formation and reradiation are assumed to be functionally

identical due to reciprocity, and both the diffraction and the

attenuation coefficients are assumed to depend to a first-order

approximation solely on the surface radius of curvature along the

direction of propagation. Thus, these coefficients are obtained from

the two-dimensional cylinder problem (Keller, 1956; Levy & Keller,

1959). It is important to note that the exponential decay represented

by the attenuation coefficient is attributed to reradiation energy loss

(not surface damping), although the derivation of the appropriate

canonical solution does take the impedance of the surface into account.

Higher-order diffraction and attenuation coefficients, which also depend

on the first and second derivatives of the curvature and sometimes also



the curvature transverse to the propagation path, have been derived by

Franz and Klante (1959), Keller and Levy (1959), and Voitmer (1970).

The surface spreading factor is determined from geometrical

considerations rather than from a canonical solution because the

appropriate canonical solution for all problems solved up to this time

would be virtually identical with that of the original problem.

The properties attributed to the Keller surface rays and the

general notion of creeping waves have probably been the most

controversial aspects of the Keller theory, despite the fact that there

is some experimental evidence of creeping waves (Harbold & Steinberg,

1969; Neubauer, 1968). This controversy has been aided by the fact that

Kouyoumjian, who has published extensively on the Keller method, uses a

different definition of the Airy function than aues Keller in his

derivation of the surface-ray coefficients. A comparison between the

coefficients used by the two different researche-s is shown in Table

1.1, which was made available to the author by Dr. Francis H. Fenlon.

Keller provided GTD solutions involving surface rays for the sphere and

the cylinder (Levy & Keller, 1959) and for the spheroid (Levy & Keller,

1960), and he showed that they matched the eigenfunction solutions in

the asymptotic limit. However, a numerical evaluation of Keller's

results for thin spheroids (that uses the first-order surface-wave

coefficients) by New, Andrews, Brill, Eisler, and Uberall (1974)

indicates that these results are in error by at least one order of

magnitude at low and even mid frequencies. In addition, Leppington

(1967) found that successive terms representing creeping waves in the

Watson-transformed eigenfunction solution for an elliptic cylinder do
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not necessarily decrease as had previously been assumed. (They do

decrease for the circular cylinder.) Finally, studies of the surface

fields on curved bodies such as spheroids by other asymptotic methods,

such as those of Chen and Pao (1977), Goodrich and Kazarinoff (1963),

and Kazarinoff and Ritt (1959), generally support the possible

interpretation of surface-wave effects on these bodies; but they further

indicate that Keller's analytic description of surface rays may not

adequately describe the phenomenon. Kazarinoff and Ritt indicate that

surface-wave propagation throughout the body may depend to second order

on the radius of curvature at the irradiated tip for axial incidence--a

conclusion that would void the local-mechanism assumption of Keller.

Note that when elastic bodies are considered, an additional type of

creeping wave, much more prominent than the Franz-type wave, is found

traveling in the elastic surface (see Doolittle, McNicholas, & Uberall,

1967; Dragonette, 1978; Goodman, Bunney, & Marshall, 1967).

The last group of canonical s)lutions for the Keller theory Lo be

considered here result from the inaccurate representations given by

geometrical optics near caustics and shadow boundaries. Since

geometrical optics predicts an infinite field at a caustic, Kay and

Keller (1954) have derived a finite solution for a caustic point and

line; and Levy and Keller (1959) have shown how these results can be

applied as a canonical solution to problems utilizing the geometrical

theory of diffraction. The discontinuities predicted by geometrical

optics at shadow boundaries have been analyzed by Buchal and Keller

(1960) as a boundary-layer problem. A boundary layer is defined as a

thin layer in which a function varies rapidly with respect to a

IAM
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parameter (such as caustics and shadow boundaries). Bucftal and Keller

showed how an asymptotic solution that is valid in the boundary layer

could be used to correct the field at surface edges. Brown (1966), Fock

(1965), and Ludwig (1969) have studied the corresponding problem for

convex bodies. In a somewhat more elegant approach, Kouyoumjian and

Pathak (1974) have used a more general canonical solution to derive

diffraction coefficients at edges involving Fresnel integrals. This

method, which is often called the uniform theory of diffraction, derives

additional terms that add to the geometrical-diffraction-theory solution

to control the problems of the latter solution in the boundary layer

(see also Lee, 1978). However, the problem of caustics in the field is

not aided by this method.

Without going into detail, it should be mentioned that the Keller

theory has been extended for use with elastic bodies (Keller, 1958) and

with bodies that can support surface waves (Keller & Karal, 1960; Karal

& Keller, 1964). In the latter case, complex rays are introduced. New

canonical solutions are also under constant development. For example,

Pathak and Kouyoumjian (1974) have derived coefficients to describe the

launching of surface rays from the edge of an aperture in a curved

surface.

1.3.10 Ufimtsev's Method of Boundary Waves

The idea of constructing a solution from a number of canonical

solutions with an assumption of localized diffraction mechanisms is not

unique to Keller. At about the time of Keller's proposals, Ufimtsev

(1958, 1969) proposed a similar technique based on physical optics. In



his method, the surface field predicted by a Kirchhoff approach, which

is known to be in error near edges and shadow boundaries, is corrected

by the addition of a nonuniform edge component or "boundary wave."

Then, the farfield solution is determined by integrating the surface

field. The boundary wave is derived using a canonical solution such as

that for a wedge or half-plane. Although a complete series of canonical

solutions is formally feasible, Ufimtsev has only derived relations for

the case of edges.

The Ufimtsev method has been compared with other methods by Knott

and Senior (1974), and Senior and Uslenghi (1971). They show that the

Ufimtsev method is correct only to first order for the strip and the

disk, but that its numerical estimates for these cases are reasonably

close to those obtained by Keller's method. They also note that

Ufimtsev does not actually evaluate the surface terms; rather, he uses

their formation to construct an equivalent group of half-planes whose

scattering solutions are then summed. In general, the Ufimtsev method

has been in the shadow of the Keller method since its inception because

of its dependence on integral formulations and because it has not been

as extensively developed. Because physical optics offers an improvement

over geometrical optics, it would at first appear to hold more promise

than the Keller method. However, its strong association with the very

complex fields on the surface of a body (as opposed to those some

distance away) makes its practical implementation extremely complicated

and its solutions difficult to evaluate.
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1.3.11 T-Matrix or Extended Boundary Condition

The final theoretical method to be considered is based on the

extended boundary condition formulated by Waterman for electromagnetics

(1965) and acoustics (1969). The method makes use of the Helmholtz

integral formula and expansions of the incident, scattered, and surface

fields in terms of orthogonal basis functions. The actual relationships

among the expansion coefficients are too complex to explain in detail

here. However, in general, two sets of equations are derived: (1) the

Helmholtz integral outside the scatterer is used to relate the

coefficients of the scattered wave to those for the surface fields; and

(2) the Helmholtz integral evaluated for a point inside the body, where

the field is everywhere zero, is used as an extended boundary condition

to relate the incident-wave coefficients to those for the surface-field

components. Finally, a transition (T) matrix that directly relates the

incident-wave and scattered-wave expansion coefficients is derived. The

Helmholtz integral evaluation inside the body is called the extended

boundary condition because the condition is forced throughout an entire

volume. The basic method has also been extended to cover scattering

from elastic bodies by V. V. Varadan (1978), V. V. Varadan and V. K.

Varadan (1979), and Varatharajulu and Pao (1976).

A numerical evaluation of the Waterman (T-matrix) method has been

performed by Bolomey and Wirgin (1974). Although it is an integral

method, they show that the Waterman method is significantly more

efficient in a numerical sense than the direct integral methods

discussed in Section 1.3.3. The method is generally valid for all types

of scattering bodies, but it is currently restricted by computational

?A
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complexity to low frequencies and to roughly spherical (i.e., not

elongated) bodies. In general, a judgment of the usefulness of this

relatively new method must await its further development. The heavy

reliance on matrix techniques makes it very difficult to draw physical

conclusions about the results of a T-matrix solution without extensive

numerical evaluation, but the method could prove to be extremely useful

in the modern computer age.

1.3.12 Experimental Work

Because the study reported in this thesis is primarily experimental

in nature, a review of past experimental results is of interest. An

overall historical trend in the use of experiment seems to be indicated.

Early work in wave propagation and diffraction depended very heavily on

experimental results to "show the way." Rayleigh (1945) made extensive

use of simple experiments to aid the development of his monumental work

on acoustics first published in 1894. Becknell and Coulson (1922) first

determined that the caustic in the shadow behind a disk is the evolute

(i.e., locus of the center of curvature) of the scattering edge by means

of diffraction experiments with visible light. As interests later

turned toward longer-wavelength effects in the acoustics and microwave

range, organized scientific development began to depend more heavily on

theoretical developments. While experimental data were still used

directly for certain specialized applications, the developmental studies

began to use experiments primarily as direct confirmation of theoretical

results. The apparent transition in research methods seems to result

from the highly developed, complex theoretical methods that have been
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formulated. The resulting specialization of personnel in either theory

or experiment has made the cross fertilization of these two

complementary methods more difficult.

When examining the literature for experimental results, one is

generally disappointed by the relatively small amount of data available

(or at least published in the open literature). The bodies that have

received the most attention are the simplest shapes: the sphere and the

cylinder. For examples in acoustics, Foxwell (1970) and Weiner (1947)

examined the field near the surface of rigid spheres and/or cylinders.

The scattering from elastic spheres has also received a lot of attention

(Freedman, 1964; Hampton & McKinney, 1961; Newbauer, Vogt, & Dragonette,

1974). In fact, because the analytical solution for a sphere is so well

understood, this body is frequently used as a calibration standard for

other experiments.

Another shape that has received a fair amount of attention in

electromagnetics is the finite cone and the related cone-sphere, the

latter because of its importance as a radar target. Wiener (1948)

included the cone among the bodies on which he performed surface

measurements. Hong and Borison (1968) and Keys and Primich (cited in

Keller, 1961) provided farfield scattering results for the cone. The

cone-sphere was examined, for example, by Blore (1963), Kennaugh and

Moffatt (1962), and Senior (1965). In addition, the acoustic field of a

prolate spheroid, both on the surface (Blake & Wilson, 1977) and in the

farfield (Bayliss & Maestrello, 1978), was recently measured.

One interesting result in which experiment has played a major role

is the discovery of creeping-wave effects. Franz and Depperman (1952)

Al_
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were attempting to explain results of Limbach when they first postulated

the existence of creeping waves. Barnard and McKinney (1961) later

interpreted their measured results for elastic spheres in water in terms

of those creeping waves. However, Doolittle, IcNicholas, and Uberall

(1967) showed that Barnard and ":Kinney actually observed (and thus

discovered) Rayleigh-type creeping waves, which exist in an elastic

surface. Identification of Franz-type creeping waves was reported by

Harbold and Steinberg (1969) and Neubauer (1968), but a large degree of

doubt as to the validity of the Franz-wave assumptions still exists.

The techniques used in experimental scattering have remained

relatively static for many years. Virtually all measurements are made

in acoustic or microwave test ranges by irradiating objects with

continuous or pulsed wave fields and detecting the scattered result at

desired locations with appropriate receivers. The technique has been

extended somewhat for the determination of target shape (inverse

scattering) by recording the scattering of pulses in two or more

directions and mapping the time relationships in two dimensions (for

example, Dunsiger, 1968, 1970). In addition, Dardy, Bucaro, Schuetz,

and Dragonette (1977) have reported a technique whereby the frequency

response of a body is determined by Fourier transforming the scattering

from short pulses (see also Moore, 1974) in near real time.
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CHAPTER 2

FREEDMAN THEORY OF ECHO FORMATION

When acoustic waves are incident upon a body of given shape and

acoustic properties, complicated spatial distributions of both farfield

and surface pressure result. Much effort by many researchers has been

devoted to the development of new and refined techniques for predicting

these distributions to greater and greater precision and over wider

parameter ranges. However, when the wavelength is sufficiently small in

terms of the scattering-body dimensions and when the observation point

is sufficiently far from the scatterer, it is possible to make

assumptions that simplify the prediction techniques to a significant

degree. One appealingly simple method that attempts to capitalize on

this last fact is the Freedman (1962a, 1962b) theory of echo formation.

Unfortunately, unlike other frequently referenced methods such as the

Keller theory, the Freedman theory has not been critically evaluated in

the literature--even though its derivation is based on a Taylor

expansion of questionable validity. Consequently, a complete analysis

of the Freedman method has been included here.

The Freedman technique utilizes a physical-optics approach based on

the Kirchhoff assumptions (modified for three-dimensional scattering) to

predict the backscattering from a rigid, convex body. In general, it

shares the advantages and limitations of the physical-optics approach,

although additional mathematical complications are introduced for bodies

whose shadow projected in the direction of the incident field takes the

form of an ellipse. However, the Freedman method is formulated in a
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manner that is more useful for physical interpretation of backscattering

results for both continuous waves and narrow-band pulses. The value and

appeal of this last benefit has attracted much attention to this method,

especially in the field of underwater acoustics. Unfortunately, results

of this study show that the physical interpretations provided by the

method are sometimes erroneous.

The derivation presented here generally follows that of Freedman

(1962a). However, certain complications, such as nonuniform

source/receiver directivities, have been omitted to prevent them from

clouding the interpretation of the results. Some additional remarks and

conclusions about the method and its results have also been included.

In the last part of this chapter, the Freedman method is applied to

several examples, including spheres, cylinders, finite baffles, cones,

and modified cones. These examples are intended both to point out

important analytic features of the method and to show the computations

that have been used for comparison with experiment. Discussions of the

agreement between theory and experiment are found with the experimental

results in Chapter 5.

2.1 Derivation of the Basic Integral Expression

The general case to be considered is that of backscattering from a

rigid object insonified by a continuous, single-frequency source. The

geometry is shown in Figure 2.1. The transmitter/receiver pair acts as

a point element located at the origin of a spherical coordinate system

in an unbounded, nondissipative, homogeneous, isotropic, fluid medium.

The scattering body is assumed to be both rigid and convex. Its surface
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SCATTERING BODYz, ¢- S(re)z

TRANSDUCERS

X"

Figure 2.1 Definition of the geometry for backscattering showing the
locations of the transducers and scatterer, a strip along
the scatterer between ranges r and r+dr, an area dS, and the
surface normal n.

4i
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is represented by an equation of the form = S(r, #), whicn may be

multivalued. A surface element of area dS and outward normal n exists

at every point (r, ) on the body surface S.

Assuming that the scattering body is far enough from the

transmitter for the inverse-range law to hold, the pressure incident on

an element of body surface dS at a distance r from the source is given

by

P exp(-ikr) (2.1)

r

Here k = 27,/k is the wave number, X is the wavelength in the fluid

medium, and P is the strength of the source. A harmonic time dependence

of exp(iwt) has been suppressed. The particle velocity of the wave

incident at dS can be obtained from the corresponding pressure by the

relation (Skudrzyk, 1971, p. 280)

17 (2 .2)U (k-) Vp ,(.2

where ) is the density of the medium and c is the sound velocity in the

medium. (Note the use of an underscore to represent a vector quantity.)

Substituting Equation 2.1 into Equation 2.2, one obtains for the

velocity incident on dS in the directicn of propagation

p.
Ui (1 )(1 - (2.3)ui

Since the scattering body is rigid, the component of the net velocity

normal to the surface must be zero on the surface. Thus, each element

I- ______-- _ ___b
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dS must act as a source of volume velocity -u cos ,dS to cancel theI

normal component of the incident velocity.

At this point, the Kirchhoff approximations are introduced.

Kirchhoff assumes that each area element in the illuminated region acts

as if it were imbedded in an infinite plane baffle, thus radiating

equally over a solid angle of 21T. In addition, the field in the

shadowed region is assumed to be identically zero. The pressure dp
5

back at the receiver due to the radiation of a source element of volume

velocity -u.cosiPdS is given by (see Skudrzyk, 1971, p. 348)
1

dp s = (__)- ( - (.)- exP(- 2 kr)cos 1, dS (2.4)
r

If one assumes that the range is large enough for terms of order (1/r3)

to be neglected compared to those of order (1/r2 ), this equation reduces

to

dps . (-)(exp( 2 kr))cos - dS (2.5)
r

The total pressure ps at the receiver due to backscattering from the

body is obtained by integration over the illuminated surface:

PS (e xP(-i2kr)) cos dS (2.6)
rS

This is just the Kirchhoff integral expression for the backscattering

from a rigid body. The same relation can be derived by more formal

means, as is shown in Appendix A.
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In order to further evaluate the Kirchhoff expression (Equation

2.6), the projected area cos:pdS can be specified in the form

dS cos V = F(r,e)drde (2.7)

This alows Equation 2.6 to be written as

P= (-) {exp(-i2kr) d dr ,

0 
r

where the inner integral is applied over the range of a appropriate for

each constant value of r. The kernel of the 9 integral is noted to be

the differential element of solid angle (see Spiegel, 1959, pp.

124-125). The total solid angle subtended by the portion of the

scattering body within range r is thus given by

r

r0 r

The derivative with respect to range of W(r) matches the inner integral

of Equation 2.8, allowing that equation to be written in the form

P (---) d J dr) exp(-i2kr)dr (2.10)

0

[assuming that W(r) is continuous]. Thus, the Kirchhoff scattering

expression can be formulated in terms of the derivative of the solid

angle subtended by the portions of the scattering body within range r.

Note that the integral now takes the form of a Fourier transform. Note

Ah m M EN
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also that, as r becomes large enough for the variation in (Iir2 ) over

the extent of the scattering body to be neglected, v;(r) may be replaced

by

W(r) = ~)(2.11)
r

Here A(r) is the projection toward the transducers of that part of the

scattering body within range r, and r mis some mean range to the body.

2.2 Integral Evaluation by Discontinuities in W(r)

The derivation of the scattering equation up to this point has

differed little from common implementations of the Kirchhoff method.

However, Freedman makes a significant departure from earlier practice by

evaluating the modified Kirchhoff integral (Equation 2.10) in terms of

the discontinuities in W(r) and its derivatives with respect to range.

The effect of this last procedure is to divide the integral into a

series of contributions that can be related to various physical features

of the scatterer.

Let r Idenote the range to the nearest part of the scattering body,

and let r denote the range to the furthest part of the body in the
f

illuminated zone. In general, the total solid angle W(r) will be zero

for ranges up to r1 , will increase continuously from range r 1 until it

reaches a maximum at range rf I and then will remain at that maximum

value out to range infinity. Consider, however, the example illustrated

in Figure 2.2. In this case, a portion of the scatterer surface at

range r 9is parallel to the incident wavefront, causing a discontinuous
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TRANSDUCERS - - -

W11,

I I

0 r rg f RANGE

Figure 2.2 Approximate values of the solid angle W(r) versus range r
for a body with a portion of its surface parallel to the
incident wavefront.
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jump in W(r) at that point. Equation 2.10 can be evaluated for this

example if the function W(r) is continuous over the remaining portions

of the range (or else further subdivision must take place) and if the

derivative dW(r)/dr is modified to account for the discontinuity.

Still referring to the example in Figure 2.2, let W_(r) be a

continuous quantity that represents W(r) from range zero to range rg"

The continuity at r means that the single-sided limit of the function
g

W_(r) as r approaches r exists and that the value assigned to the
-- g

function at r is this limit. Similarly, let W (r) be a continuous
g +

quantity that represents W(r) from range r out to range infinity.
g

Finally, let the size of the discontinuity at r be denoted by D, where
g

D = W(rg) - W +(r) (2.12)

The function W(r) can be represented as

W(r) - - DH(r - r) , (2.13)

(W+(r) + D rg < r < g

where H(r-r ) represents a Heaviside step function. Since the result

will eventually be integrated, one can differentiate Equation 2.13 to

cbtain

dW (r)
dr 0< r <rg

dW(r) 0 - D6(r - rg) (2.14)
dr dW +(r) g

dr r 9 r<

Here 6 (r--r ) is a Dirac delta function. If Equation 2.14 is substituted
g
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into Equation 2.10, three integrals result: the two continuous

integrals on either side of r and the delta function contribution at
g

r . The latter contribution is just
g

1 DS(r - r )exp(-i2kr)dr = D exp(-i2kr) . (2.15)
0

Since dW(r)/dr is zero for r < r I and r > rf, the value of the integral

over the full range becomes

r{(dW(r)) 2 dW_ (r),

0 d)exp(-i2kr)dr j i (r exp(-i2kr)dr

r

r rf

+ (-dW (r) exp(-i2kr)dr

r
g

- (W_(r ) + W+(r ))exp(-i2kr )

(2.16)

These results can be extended to include cases where more than one

discontinuity exists in W(r) by further dividing the range into

subdivisions between each discontinuity.

The preceding analysis shows how the modified Kirchhoff scattering

integral (Equation 2.10) is related to discontinuities in the solid

angle W(r) subtended by the scattering body. However, the solutions

over the continuous ranges of the function are still in integral form.
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To evaluate these continuous integrals, the indefinite integral or

antiderivative given by

I dW(r))e(i .i7)
d(r) = d exp(-i2kr) (2.17)

must be examined. If the integrand is continuous over the range of

integration rI < r < rf) then the value of the integral can be

determined solely by the antiderivatives at the end points. In this

case,

r

(dW(r))ex(-i2kr)dr I (rf) - l~r1) .(2.18)

Using this notation and the range subdivision of Equation 2.16, Equation

2.10 can be written in the form

f

Ps =Z (-P {(I_(rg) -Ir)-iP

g= 1

- (WCrg) - W+(rg))exp(-i2krg)} (2.19)

where I (r) and I (r) refer to the antiderivatives of the continuous

integrals involving dW_(r)/dr and dW (r)/dr. This relation is valid- +

when the summation includes ri, rf, and range points in between them

where discontinuities in W(r) occur. [Recall that I_(r I ) I +(rf) - 0.]

However, in order to support the next step in the Freedman procedure,
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the summation is extended to include points where discontinuities in

derivatives of W(r) occur. This extension does not affect the result of

Equation 2.19, and it will be used in the following discussion to

express the value of p solely in terms of discontinuities in both W(r)
s

and its derivatives.

A further evaluation of the indefinite integral (Equation 2.17) can

be performed by noting that it is of the form

l(r) = J f(r)exp(-i2kr)dr (2.20)

If this equation is integrated iteratively by parts m times, the

solution becomes

m

( i n f ( n - ) ( . 1

I(R) = -exp(-i2kR) ()f (R) + R m

n 1

where

R -- (i2k)
-m J f(m)(r)exp(_i2kr)dr (2.22)

R

and

(M) (M)
f(i)(r) = (E-)f(r) (2.23)

drm

Finally, by replacing f(r) with its actual form from the modified

--
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Kirchhoff integral (Equation 2.10), one obtains

m

W ~(n) (R)
I(R) = -exp(-i2kR) (n ) + R . (2.24)

E (i2k) m
n= 1

In his derivation, Freedman draws the tempting additional

conclusion that Equation 2.24 can be treated as an asymptotic, series

representation of I(r) for large values of kr by letting m tend to

infinity. This would require that

(1)m J IW~ 1 (r) Idr - 0 as m (2.25)

R

However, there is no justification for making this assumption.

Furthermore, as is shown later for the example of a circular disk, this

series representation fails completely with many useful scatterer shapes

because of the unbounded behavior of dW(r)/dr and its derivatives at

crucial ranges. Since the disk example can be solved by direct

application of the Kirchhoff integral (in the form of Equation 2.6), the

difficulty clearly lies with the solid-angle interpretation of the

Freedman method. Having expressed that conclusion for the general case,

it should also be mentioned that there are useful examples where the

integration-by-parts procedure terminates naturally after a few terms

(the sphere, for example). Thus, the Freedman technique is useful if

its application is restricted to problems where the series of

integrations does terminate. From that point of view, this procedure

should be considered a formal solution technique for the Kirchhoff

integral expression rather than an asymptotic approximation of it.
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Keeping the reservations mentioned in the preceding paragraph in

mind, substitution of the integration-by-parts expression of Equation

2.24 into one term of Equation 2.19 yields

(_(rg ) - I+(rg)) - (W_(r ) - W+(rg))exp(-i2krg)

N (W_(n) (r W (n) (r)

-exp(-i2krg) { - + } (2.26)
g ~(i

2k)n
n= 0

Note that N is large enough to guarantee that higher-order derivatives

of W+(r) are identically zero. The quantity [W_(n)(r) - W (n)(r )
g_ -- g

represents the magnitude of the discontinuity in the nth derivative of

W(r) with respect to range. Let it be denoted by D(W,g,n). The total

expression for the backscattered pressure from Equation 2.19 can then be

written as

f

P.,' E , (2.27)
gg= 1

where

N

E = (P )exp(.i2kr D )) (2.28)
9 9 (i2k)n

n=0

The quantity E represents the scattering contribution due to allg

discontinuities in different orders of W(n)(r) at range r , and the sum

of these contributions at all appropriate ranges r is the totalg

-J mimmmm mmmm
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backscattered pressure ps. At large ranges, the solid angle W(r) can be

replaced by the normalized area (Equation 2.11) to obtain

N
Eg = ( iP 2)exp(-i2krr D(A'g'n)l~) (2.29)

Xr g i~)m

where

D(A,g,n) = A- ( n  ) - A+ (n)(r) (2.30)

Before proceeding further, a few comments about the general

techniques just described should be reviewed. First, consider the

introduction of discontinuities in the zeroth and first order of

W(n)(r). When solving the Kirchhoff integral (Equation 2.6) directly,

one finds that it is necessary to split the range of integration

precisely as is done in the Freedman method because of either a

piecewise-continuous kernel or a surface parallel to the incident

wavefront. Solving each of the resulting continuous integrals will then

yield the same final solution as Freedman obtains, but the solution will

be perceived as arising from the integration between discontinuities

instead of the change of value at each discontinuity. From an intuitive

point of view, it is natural to expect some physical response to arise

at the point where a jump in a function that is otherwise continuous

occurs. However, the quantitative values associated with the

discontinuities are suspect because the surface field predicted by

Kirchhoff methods is known to be erroneous at edges (Wiener, 1949). In

fact, the accuracy of the Kirchhoff method is usually attributed to its
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integration over a few Fresnel zones without seriously violating the

assumption of a planar neighborhood. As a second comment, the Ligher-

order discontinuities in the Freedman method arise from a valid solution

technique in those cases where the integration-by-parts series

terminates. These discontinuities do not explicitly appear when

performing the Kirchoff integration directly. However, at points where

only a second- or higher-order discontinuity is found, the direct

integration method will be required to split the range of integration

exactly as does Freedman because of a change in the functional form of

the integrand (such as occurs at the rear joint of a cone-sphere).

Finally, note that the form of the function W(r) (or A(r)] must be known

explicitly in order to determine the values of the various

discontinuities. In addition, when the functional form is known, it

frequently exhibits essential discontinuities in its derivatives. Any

furthe- evaluation of the Freedman method is best performed by

comparison with experiment, as has been done in Chapter 5 of this

document.

2.3 Extension of Results to Narrow-Band Pulses

Under the assumption of narrow-band pulses and idealized

transmitting and receiving systems, the results of Section 2.2 for

continuous, monofrequency scattering can be extended to include pulsed

signals. Let V(T) represent the waveform of the incident pulse on a

time scale where

2r
T t - (=&) (2.31)

4A
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The bandwidth of the pulse is assumed to be sufficiently limited for

V(T) to be represented as

V(T) = V'(T)exp(iw 0T) (2.32)

where u0 is the center frequency of the pulse's spectrum. This is true,

for example, with a gated sine burst for which the gating envelope

includes several cycles of the sine wave. Consideration of the waveform

shape is based on the following Fourier transform pair:

v(w) = ( ) V(T)exp(-iwT)dT (2.33)

and

V(T) f v(w)exp(iwT)dw (2.34)

Note that the factor 1/2r has been assigned to the forward transform to

simplify the following discussion.

The previously derived solution at each frequency, Equation 2.28,

can be separated into components from each order of discontinuity as

E(g,n) p () exp(-i2krg) (D(W'g ,n).) (2.35)

g (i2k)n

Inserting the exp(iwt) time dependence (which has been suppressed) and
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rearranging to see the dependence on w, this equation becomes

2r

dE(gn) - (iwv(())expriwt - i (g))(7)nD(Wg,n, )dw
,Cc I

(2.36)

The left-hand side of Equation 2.36 has been designated dE(g,n) because

it now represents one frequency component in the spectrum. Note that

the wave constant P has been replaced by the appropriate spectrum

coefficient v(w), and the frequency dependence of D has been explicitly

denoted. The total response is obtained by integrating over all

frequencies to obtain

E(gn) c l-)n f 1-nv(w)exp(io0T)D(W,g,n, ))dw

(2.37)

The spectrum of the transmitted pulse is assumed to be zero outside a

band of

- (-) < W < W + ( A) (2.38)

Equation 2.37 then becomes

* 0 +(Aw/2)

E(gn) ( ) n) wl-nv (w)exp(iwT)D(Wgnw)dw

0 Q- (Aw/2)

(2.39)
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Now assume that Wl-n D(W,g,n,w) is slowly varying over the bandwidth of

integration. Thus,

E(gn) (D(Wgnw) v( )exp(iwT)dw (2.40)
T (i2k0 ) n

S0- (A/2)

where

0 koc 2rc (2.41)

Since v(w) is band-limited, the integral in Equation 2.40 is just the

transform of Equation 2.34. As a result,

E(g,n) 0 (0)v(r)( (i~ko) ) (2.42)
X0 (i2k 0)n

Finally, using the form of V(T) given in Equation 2.32, one obtains

E(g,n) (-)V'(T)exp(iw 0 t - i2k0 rg) ('ign
X 0 g9 i'k, )

Note that this equation has exactly the same form as that for tne

continuous-wave case, Equation 2.35, with the frequency and wavelength

parameters replaced by mean values.

In physical terms, Equation 2.43 indicates that a sine-burst pulse

of sufficient length and sufficiently smooth envelope will act

approximately like the continuous-excitation case for the pulse's mean



frequency. Each backscattered contribution will be an approximate image

of the incident pulse, and the total solution an be found by

vectorially summing the components. This last result is the reason for

denoting the Freedman technique as an echo formation method.

2.4 Examples of Some Simple Bodies

Probably the best way to gain insight into the Freedman method, is

through examples that are solved and compared with other results. The

following sections discuss solutions for the sphere, the circular disk,

the square plate, the finite cone, and cone variants. Comparison of

these results with experimental values is presented in Chapter 5. Note

that the circular disk is a case where the Freedman method breaks down

but a direct solution of the Kirchhoff integral yields a valid

prediction.

2.4.1 Sphere Example

The sphere has been studied as a diffraction target probably more

than any other body. However, this fact makes it an excellent first

choice when evaluating a new scattering method. Computing the

backscattering from a rigid sphere at large range by the Freedman method

rests almost completely upon determination of the ranges and values of

the discontinuities in the projected area A(r). A qualitative plot of

these functions with the associated geometry is given in Figure 2.3.

The only discontinuities lie at the specular reflection point and the

shadow boundary (i.e., at the closest and furthest illuminated points).

A tabulation of the values of these discontinuities is given in Table
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Figure 2.3 Approximate values of the projected area A(r) and its
derivatives for a sphere.
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2.1. Note that derivatives of A(r) of third or higher order are

identically zero except for delta functions, which have been considered

separately in the derivation of the solution technique.

Substituting the discontinuity values of Table 2.1 into Equation

2.29, one finds for the components from ranges r1 and r2

E = i- a (2.44)
r
m

and

= (-)exp(-i2ka) (2.45)
2 4kr

m

where

M = P exp(-i2krl) (2.46)

The first term of the E1 component corresponds to that for geometrical

optics, while the second term is presumably a correction to that result.

E2 is a component arising at the shadow boundary.

The Kirchhoff integral in the form of Equation 2.10 can be solved

directly in this example by substituting for dA(r)/dr. Since the

tnregrand is continuous, the process involves solving the expression

r.-a

- - r) exp(-i2kr)dr (2.47)
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Table 2.1

Freedman Discontinuity Data for a Sphere of Radius a

n A (n) (r) D(A,l,n) D (A, 2, n)

0 ia{l - [(a- (r- r,))/a]} 0 0

I 27 (a - (r - r1 ) )  -2,ra 0

2 -21T 2 -2T

3 0 0 0

"



formally and evaluating it at the two endpoints. The resulting

contributions at each end of the integration range correspond preciie.>

to the previous expressions given in Equations 2.44 and 2.45. This is

not surprising since the Freedman results are based on the same

procedure except that the integration is done formally by parts before

substitution of the actual quantities. Note that one may have

difficulty attributing a ohysical significance to the discontinuities

with an order of greater than one in the Freedman solution because they

arise solely as intermediate results of the integration by parts.

However, the Freedman formulation replaces the integration required in

the evaluation of the solution with a series of sim~pler

differentiations.

2.4.2 Circular-Disk Example

The circular disk is interesting from the point of view of the

Freedman method because it is one of the simplest examples for which the

method breaks down. Figure 2.4 is a plot of the geometry and the

relative values of A(r) and its derivatives. At nonaxial incidence, the

projected area takes the form of an ellipse. The area of the ellipse

subtended as a function of range r can be computed by integrating a

strip parallel to the axis of rotation to obtain

A(r) =a2 Cse(R(l - R2)1/2 + arc cos(R)) , (2.48)
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Figure 2.4 Approximate values of the projected area A(r) and its
derivatives for a circular disk at nonaxial incidence.
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whe re

a sin e - (r - r 1)
Ra sin 3

a is the radius of the disk, and R varies between I at r1 and -1 atr)

The term (1-R2)112 causes the breakdown of the Freedman formulation, as

is easily seen by differentiating Equation 2.48 to obtain

dAr) = a 2cos 2 1/2R + (1 - R)j /2 (2.50)
dr ~ (1 - R 2) 12a sin 9

This expression and all further derivatives tend to either negative or

positive infinity at both endpoints of the range. Thus, the Freedman

solution reduces to a summation of infinite discontinuities at bothr

and r 2.

The problem of infinite discontinuities is based on the behavior of

the area expression (Equation 2.48) as a function of range. The initial

(zero) and final (maximum) values are approached smoothly with greater

and greater slope. Since the form of dA(r)/dr is troublesome, direct

evaluation of the modified Kirchhoff expression (Equation 2.10) is not

possible. However, the difficulty is, in fact, solely attributable to

the interpretation of the scattering process in terms of the area

derivative with respect to range. A continuous integrand can easily be

derived using the geometry of Figure 2.5. Note that, in this case, the

origin of the coordinates is placed at a convenient point on the

scatterer instead of a point on the transducers to simplify the

analysis. Substituting into the original Kirchhoff integral of Equation
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2.6 and assuming that the range is large, one obtains

a 2-

PS ( )exp(-ilkR) r exp(iko'cos , sin e)
0 0

•cos 06pd~dpI , -. 1

which can be evaluated using the formula (Skudrzyk, 1971, p. 697)

2 -,

J(x) = (.) f eiX Cos eimodo (2.52)
0

to yield

-ikP exp-i2kR))a2 J1(2ka sin 8)
( eR 2 Ja cos (2ka sin ) (2.53)

This expression can also be utilizEd at normal incidence by taking the

limit as e- 0 to yield

Ps(o - O) " (-ikP exp(-i2kR)(a) (2.54)

R2 "

These last results show that the problems encountered with the

circular disk are due to the Freedman interpretation and not the

Kirchhoff formulation itself. The particular geometry that precipitates

the difficulties (the projected ellipse) also occurs with other simple

objects such as finite cylinders and cones. From a qualitative point of

view, the Freedman prediction of returns from ranges r1 and r2 appears

to have validity based on physical intuition, and this correctly

#A
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corresponds to observed data (see Section 5.4.3). However, the direct

Kirchhoff result obtained in this case does not separate into individual

components like the Freedman result would do because the integral was

recognized as a form of the Bessel function.

2.4.3 Rectangular-Plate Example

The geometry for the rectangular plate is shown in Figure 2.6.

Although it appears to be similar to that for the circular disk, the

projected-area function A(r) in this case approaches the endpoints at a

constant rate. Thus, the derivatives of A(r) are well behaved and

truncate at the second order, as is shown in Table 2.2. Substitution

into the Freedman equation (Equation 2.29) yields the following

components at rI and r2:

E - -Mb cot e (2.55)E1 = 2

27r
m

and

(Mb cot 6 -i4ka sin 8 (2.56)E2  2Trr 2)e(.6

m

The magnitude of the sum is

psI - IE + E2j = (P2kab cos 0) sin(2ka sin (2.57)
s 1 2 2ka sin (

7r
m

As in Section 2.4.1, the same result is obtained by direct integration

of the Kirchhoff integral expressed in terms of the area derivative
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Figure 2.6 Approximate values of the projected area A(r) and its
derivatives for a rectangular plate at nonaxial incidence.
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Table 2.2

Freedman Discontinuity Data for the Rectangular
Plate of Figure 2.6

n' A (n)(r) D(A,1,n) D(A,2,n)

0 (2b/tan 9)(r - r 1 ) 0 0

1 (2b/tan 8) -(2b/tan 6) (2b/tan 8)

2 0 0 0



r)

(Equation 2.10), with the two components (E and EI) arising froo the

integral evaluation at the two endpoints.

2.4.4 Finite-Cylinder Example

The solution for backscattering from a finite circular cylinder at

nonaxial incidence includes contributions both from the disk at the

illuminated end and the side. The cylinder end is essentially the same

as the circular disk, and the Freedman summation breaks down in the same

manner as has been shown for the disk (see Section 2.4.2). This

summation also breaks down for the side component. However, the

Kirchhoff result can again be obtained directly.

Refer to the geometry of Figure 2.7. Calculation of the

contribution from the endcap follows closely that shown in Section 2.4.2

for the circular disk, with

r = R - P'cos e sin e + Z cos a (2.58)

assumed at large range. The result is

(ikPe - 2 k R 2 e-i2kt cos 6 e 1 sin )
ps(top) = 2 )a cos C l 2 a

(2.59)

which is the same as that for the disk except for the additional phase

factor involving the half-length Z of the cylinder. Computation of the

side contribution is somewhat more involved. Assuming that

r = R - z cos 8 + a cos 0 sin e , (2.60)
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the Kirchhoff integral becomes

-iPe - 2 k R rde -i2ka cos sinPs(side) =(- . ) e

ik A os 0

e 2kz cos 6 cos D sin 6 adodz (2.ol)

This integral can be evaluated using a modified form of the 3essei-

function relation in Equation 2.52 to obtain

P e -k2p-i2kR(4a2  sin 2 a, Jl(2ka sin 6)
PeS 2ka sin aR

j0 (2k2 cos 3) (2.62)

Equation 2.62 exhibits an angular dependence similar to that of the end

component multiplied by a j0 (x) - sin x / x term that depends on the

length of the cylinder. Finally, in situations where the end and side

components interfere, the magnitude of their vector sum becomes

2 J(2ka sin ) (16k2 2sin2(2k cos )

Ipsl ( )( 2ka sin 6 ){cos 2 e + kZ sin 2(2kZ cos a)2

2 . 2 ,1/2

sin 2(sin2 0 - cos 2) 1 (2.63)

2.4.5 Finite-Cone Example

The finite cone will first be considered for axial incidence only.

The geometry and behavior of the discoitinuities are shown in Figure

2.8, and the quantities required for the Freedman solution are listed in
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Figure 2.8 Approximate values of the projected area A(r) and its
derivatives for a finite circular cone at axial incidence.
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Table 2.3. The evaluation yields for the component returns from the tip

E= IX )tan 
r

and from the rear

E 2 ( )exp(-i2kh)h tan (. (2.65)E2  2r 2- -" htn ( 2k)

m

The magnitude of the sum becomes

2M tan 2 sin2kh + (sin2 kh.1}/2
lps I =1E 1 + E 2 1 ( tan L)( -l sikh) + (kh2r " (kh)-

(2.66)

The finite cone at nonaxial incidence presents some difficulty.

Depending on the relative values of the cone half-angle and the angle of

incident radiation, a number of individual cases must be considered.

For incidence at an angle less than the cone half-angle (i.e., e < 6 in

Figure 2.9), all of the cone except the base is irradiated. However,

for C < e < n/2, a shadow boundary is formed on the side of the cone.

Evaluation of the Freedman discontinuity data shows that, like the

circular disk and the side of the circular cylinder, the expressions

break down as a result of infinite discontinuities. A direct evaluation

of the Kirchhoff integral (Equation 2.6) can be constructed in this

case. However, the integration cannot be carried out analytically

except in the special case of axial incidence, for which one obtains the

same result as that of the Freedman method.

. . . .. . . . . . . . . . . . AM
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Table 2.3

Freedman Discontinuity Data for the Finite

Cone at Axial Incidence

n A( n ) (r) D(A,l,n) D(A,2,n)

0 Tr(h (r2  r))2 tan 2  0 0

1 27T (h- (r2 - r))tan 2 E 0 2nh tan2

2 27 tan2 E -2n tan 2  2 2

3 0 0 0

.4q
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Figure 2.9 Geometry used f or calculation of backscattering from a
finite cone at nonaxial incidence.
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2.4.6 Modified Cone Examples

Variants of the finite~ cone are very useful for studies of

scattering from surface discontinuities. Comparisons of diffraction

from tips, first-derivative (slope) discontinuities, an~d second-

derivative (curvature) discontinuities can be made by joining portions

of spheres to the basic cone shape in the required manner. The Freedman

prediction method is well suited for this type of backscattering problem

because the solution can be constructed by joining the solutions of the

basic constituent shapes with the correct phase factors. At the same

time, studies of discontinuities on the surface of modified cones

represent a good test of the quantitative values for edge-type

scattering predicted by the Freedman theory (and hence physical optics),

at least for axial incidence where this theory is valid. Thus,

computations have been made for three selected cases: (1) a cone-

sphere, where a sphere is joined to the rear of a cone smoothly in both

cross-section and surface slope; (2) a spherically capped cone, where a

sphere is joined to the tip of a cone smoothly in both cross section and

slope; and (3) a hemispherically capped cone, where a hemisphere is

joined to the front of a cone smoothly in cross section only.

A representation of the geometry for the cone-sphere appears in

Figure 2.10. The spherical termination reduces the severe discontinuity

at the rear of the cone (whose contribution dominates the

backacattering) to a discontinuity in curvature only. The values of the

resulting Freedman discontinuity data are presented in Table 2.4.

Substitution of these data into the Freedman relation (Equation 2.29)
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Figure 2.10 Geometry used for calculation of backscattering from a
cone-sphere at axial incidence.
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yields for the scattering components:

E1  2 )- (-:-kt an E(2.67)

rm

E -iM)e-12kh 1 + 2 , (2.68)
r

m

and

(iM e-i2kh(l+tan 2 
E) (E3  e -( (2.69)

r
m

As expected, the contributions from the closest (E1 ) and furthest (E3 )

ranges are equivalent to those from the cone and sphere, respectively,

modified by the proper phase relationships for the new geometry. The

contribution E2 from the cone-to-sphere joint region, which has the same

frequency dependence as that from the tip (E1 ) but is much stronger, is

a new result.

To compare the scattering from a curvature discontinuity with that

from the abrupt rear edge of a cone, a spherically capped con- is used.

The geometry is shown in Figure 2.11, and the Freedman discontinuity

data are listed in Table 2.5. The values have been computed by

specifying the radius b of the spherical nose and then determining the

shortening parameter m that will match the surface slope at the joint.
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Figure 2.11 Geometry used for calculation of backscattering from a
spherically capped cone at axial incidence.
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The pressure components from the three discontinuities are

-'f b (2.70)
El = (-- (l (

r
m

iM -i2kb(l-sin E) 1 +E 2 -(-" 2e( + tan- e) (2.71)

r m

and

E3 M e -i2k(b(1-sin c)+mh)(h tan 2 e
E3  r-~ 2 2)( 1K ~2h

r
m

(2.72)

These expressions, with the exception of the geometry-related phase

factor, correspond to the specular sphere component (E ), the cone-

sphere joint (E2 ), and the cone termination (E3 ), respectively.

Finally, in order to note the difference between a discontinuity in

curvature and that of slope, the cone can be capped with a true

hemisphere whose radius is the same as that of the cone at the joint

(see Figure 2.12). The Freedman discontinuity relations for this case

are summarized in Table 2.6. The only change in this table from that of

the spherically capped cone (Table 2.5) is the additional discontinuity

at r2  in the first derivative, although the phases involved in the

resulting pressure terms also differ slightly. The pressure
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Figure 2.12 Geometry used for calculation of backscattering from a
hemispherically capped cone at axial incidence.
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contributions from each point of discontinuity in the range are

E - 22 1 + -kb .
rm

-i2kb
E )( ab +i(l + tan- E)E2 2 2 ) tan E + 2kb (2.74)

r
m

and

E3 M e i2k (b+m h ) 2 -

2Me )(h tan i - (2.75)
r

m

The contribution at the joint (E2) in this case includes a frequency-

dependent curvature quantity along with an additional frequency-

independent quantity related to the discontinuity in slope.

'9nI _ _--



79

CHAPTER 3

EXPER.IAENTAL SETUP FOR GATED-PULSE >IEASUREIEN IS

rhis chapter contains a description of the measurement chamber, the

transmitting and receiving apparatus, and most of the scattering, ,0d.s

used for gated-pulse measurements in this study. In addition, there is

an explanation of some points of technique that should be of interest,

such as the actual pressure component that is plotted in the results.

Because the reliability of the data and conclusions presented in this

document is based on the apparatus and the procedure utilized in the

investigations, the description in this chapter is both necessary and

important. However, most of the information is not required for in

intuitive overview. The delineation of the signal-detection procedure

in Section 3.4 is an exception; it should be reviewed so that the plots

appearing in later chapters can be correctly interpreted.

3.1 Measurement Chamber

All experiments in this study that involve gated-pulse techniques

were performed in the small anechoic chamber pictured in Figure 3.1.

The chamber, which has been described in detail by Berger and Ackerman

(1956), is located in the basement of Osmond Laboratory (Physics

Department) at The Pennsylvania State University's main campus. The

12 x 8 x 6 foot inside dimensions of the room make it fairly small, but

it has true fiberglass wedges backed by a cavity on all wall, floor, and

ceiling surfaces. Because this facility is used for psychoacoustic work

involving human subjects, the room contains a heavy metal grating that



Figure 3.1 Photograph of tie measurement chamber with the 28-inch
prolate spheroid in position.



serves as a f loor. Sections of this grating that lie under the

scattering object are sometimes removed during diffraction experiments

to eliminate the associated reflections, and all remaining floor

sections are always covered with a lightweight, unbacked fiberglass

(Owens-Corning R13).

Tests show that the measurement chamber is qualified for acoustic

measurements from at least I kHz to more than 50 kHz, based on the

standard inverse-square-law propagation criteria for a small source.

However, this verification procedure is of little value for diffraction

measurements. A spurious reflection reaching a microphone in the

chamber at a level 10 dB or more below the direct signal will have no

noticeable effect on the total received signal. Thus, the propagation

loss measured for the given source/receiver path will not differ from

that obtained under free-field conditions. On the contrary, the same

spurious reflection may completely obscure returns from a scatterer,

which are frequently 20 - 40 dB lower in amplitude than the incident

pulse. A better indication of the chamber's suitability for scattering

measurements was obtained by measuring the backscattered return from a

small spherical scatterer at different ranges. As expected, the latter

test did point out some inaccuracies caused by spurious reflections in

the chamber at all but the highest frequencies examined. Thus, although

the reduced amplitude of the wall reflections in an anechoic chamber is

helpful, diffraction measurements in this type of chamber must still

utilize gated-pulse techniques, and the researcher must use skill when

placing measuring equipment and models in the chamber to minimize

spurious reflections.



The measurement chamber was modified slightly for this study. A

suspension point in the form of a 5-inch-diameter disk with hooks along

its perimeter was installed between two wedges in the ceiling. This

support can be electrically rotated in either direction at about 1/2

r.p.m., and it includes a precision potentiometer that develops a

voltage proportional to the rotational position. Directly below the

ceiling support is the pivot point of a short rotating boom that can be

mounted just above the grating (floor). This boom, which also contains

a potentiometer for position indication, is used to rotate the

microphone about the scatterer for collection of ;bistatic scattering

data.

3.2 Measuring Equipment

A block diagram of the measurement apparatus, including a plan view

of a chamber setup and the associated electronic equipment, is shown in

Figure 3.2. The transmitting equipment consists of a Spectral Dynamics

SDIO4A-5 sweep oscillator, a General Radio 1396-A tone-burst generator,

a Dynaco Mark III power amplifier, and a suitable loudspeaker. A

separate oscillator drives the timing input of the tone-burst unit to

permit pulses of constant length. (Pulse timing is based on cycle count

in the GR unit.) Because the tone-burst generator attenuates the output

signal by only about 40 dB in the off state, a passive thresholding

circuit consisting of two parallel diodes has been inserted at the

output of the generator. This circuit adds a small amount of distortion

to the signal near zero volts, but it improves the off-state attenuation

by at least 40 dB. The power amplifier has sufficient drive capability
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Figure 3.2 Block diagram of the measurement chamber (in plan view) and
the associated electronic equipment.



to apply a 60-volt (peak-to-peak), short-duration pulse to a loudspeaker

with an impedance of 8 - 16 ohms.

The selection of suitable loudspeakers for this study was one of

the more difficult tasks. The size of the models and characteristics of

the measurement chamber dictate a frequency range of about 10 - 50 kHz.

In addition, a good pulse response is required. Three different tweeter

units have been used throughout the study in a roughly chronological

sequence. The first is an inexpensive piezo-bender horn loudspeaker

manufactured by Motorola (Super Horn, Model No. 50D59067AO1). This

tweeter provides a reasonably flat output over the frequencies of

10 - 40 kHz. However, asymmetries occur in its directivity pattern at

angles small enough to influence the scattering from the larger models.

The Motorola tweeter also has a low power-handling capacity, which

mandates a low repetition rate for the pulses. The second tweeter is a

dynamic horn loudspeaker with a titanium diaphragm manufactured by

Technics (Model No. EAS-911H42). This unit has a very smooth

directivity curve and a large (20 watts continuous) power-handling

capability. However, it has no useful output at frequencies above about

25 kHz, and the mass of its coil assembly degrades the transient

response. The best tweeter that has been found is a magnetic-ribbon

unit also manufactured by Technics (Model No. EAS-I0THIO00). This

loudspeaker has a usable output from about 5 kHz to at least 5U kHz. It

also has both a wide, uniform directivity pattern and excellent

transient characteristics. Unfortunately, the ribbon tweeter is very

expensive and somewhat difficult to obtain.

qA
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The receiving equipment used f or gated-pulse measurements in this

study consists of a Bruel and Kjaer 1/2-inch condensor microphone (Model

4133) with associated cathode follower and power supply, an Ithaco M1odel

435 adjustable-gain preamplifier, an 18 - 24 dB/octave filter (either an

SKL 302 or an Ithaco 4302), a Tektronix 561B oscilloscope, a special

receiver-gate module, and a Mosley Model 135 X-Y plotter. The excellent

(although insensitive) response of the condensor microphone at

frequencies up to 40 kHz made selection of this critical transducer much

easier than that for the loudspeaker. The filter is used only for

suppression of residual hum components from the microphone and

associated cables. The oscilloscope is used to monitor spurious returns

and to observe pulse shapes. (The waveform of the scattered returns

frequently conveys useful information about the physical scattering

mechanism.) Finally, the plotter is used to make graphs of selected

returns as a function of either the appropriate rotation-position signal

from the chamber or a ramp voltage proportional to frequency from the

sweep oscillator.

The heart of the receiving system is the receiver-gate module.

Although commercial units exist, the module used in this study was

constructed as part of this project to reduce the required expenditure.

The device performs the following functions: (1) full-wave rectifies

the input signal; (2) measures the peAk value on a logarithmic scale;

and (3) samples and holds the peak value received in a preset time

window until the next pulse. In application, the width and time delay

of the sampling window are adjusted to include the desired returns, and

a continuous plot (actually updated at every pulse) is made of the



amplitudes of the returns. The circuit designed for this project can

provide a dynamic range of about 40 dB (60 dB if carefully adjusted).

Because of its usefulness and relatively small cost, a complete

schematic of the device is included as Appendix B. Note that a version

of this device used for some of the earlier data drifted in calibration

over time by as much as 2 - 3 dB, which meant that the calibration had

to be checked frequently to insure reasonable accuracy. The final

version (described in Appendix B) appears to be stable within at least I

dB over a period of weeks.

3.3 M1odels

Several experimental models have been either acquired or built for

this study, including prolate spheroids, cylinders, spheres, and finite

cones. Most of the models are made of wood, although the selection of a

construction material is not critical in mos., cases. The high ratio of

characteristic impedance between the model material and surrounding

medium that is required to consider a scatterer as a rigid body is

easily satisfied for experiments in air. A soft wood such as pine has

an impedance that is almost 4000 times that of air. Even a soft rubber

has an impedance 160 times that of air. For this reason, all the

scatterers and surface obstructions used in this study are considered as

ideally rigid except the cloth OAmping material used in several

experiments.

The assortment of spherical models allows scattering data to be

collected over a range in ka (a -radius, k - 21T/X) of about .6 - 120

for a frequency range of 10 -40 kHz. The largest spheres are spun-
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aluminum shells of 6- and 12-inch diameters. The smallest spheres art,

steel ball bearings having 1/2- and 1/4-inch diameters. The validity of

the data obtained from the two smallest spheres (i.e., for ka < 6) is

somewhat questionable, however, because almost any form of suspension

scatters more than these spheres. Standard pool balls, 2-1/4 inches in

diameter, also make excellent models. Because of their easy

availability, these balls hIve been used wherever the models have been

modified in a destructive manner.

Cylindrical models appropriate for both finite and infinite

examples have been utilized. The "infinite" cylinders are aluminum

tubes that are at least 6 feet long and have 6-, 1-1/4-, and 3/4-inch

diameters. This translates roughly into a ka range of 2 - 60. The

models used as finite cylinders, however, are concentrated in a lower ka

(frequency) range of .3 - 7. These small cylinders were machined from

solid drill rod in all combinations of the lengths of 1, 3/4, 1/2, 1/4,

and 1/8 inch and diameters of 3/4, 1/2, 1/4, and 1/8 inch. The 20

cylinders were used both individually and as obstructions placed on a

spheroid.

Figure 3.3 shows the spheroidal models used. There are three

prolate spheroids with a length-to-width ratio of 7:1 and major axes of

42, 28, and 14 inches. These thin spheroids were originally constructed

for hydrodynamic tests, and they are made of solid wood that is heavily

varnished. Using the radius of the spheroid at the tip as the

characteristic dimension a, the range in ka covered is about .7 - 7. If

the normalized spheroidal coordinates (see Section 4.1) are considered,

the range of the parameter hE covered is about 30 - 390. A less
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Figure 3.3 Photograph of the prolate-spheroid models.



eccentric, wooden (unvarnished) spheroid with dimens ions of 3 x ~ice

was obtained for the creeping-wave neasurements. For this spheroid, the

parameter hic varies over a range of about 12 - 48.

Figure 3.4 shows the special cone model that was constructed for a

series of tests on edge diffraction. The basic shape is that of an

18-inch-long cone with a 20 0 half-angle made of uncoated wood. If bL is

the radius of the base (which, in this case, is just over 6-1/2 inches),

the range of kb covered is about 28 - 112. This translates to a range

in kh of 85 - 335, where h is the cone length. The tip of the cone was

constructed as a separate section and then attached to the point on the

cone body at which the radius of the cone is 2 inches (i.e., about 5-1/2

inches from the tip). This tip section can be removed and replaced by

one of several caps that form specular regions and/or edges on the

surface. The caps include portions of spheres that join the cone

outline smoothly in both cross section and slope to produce nose radii

of 1/2, 1, and 2 inches (C, D, and on cone in Figure 3.4), respectively.

There is also a hemispherical cap with a 2-inch radius (A in Figure 3.4)

that is continuous only in surface cross section at the union between

the hemisphere and the come. In addition to the various caps, the base

of the come contains a threaded fixture countersunk into its surface so

that special terminations can be mounted. The two terminations used

include a hemisphere with a radius equal to that of the cone base and a

large spherical section that preserves both the slope and cross section

of the cone outline at the joint (cone-sphere). The cone and all of its

caps andl terminations were machined precisely out of solid wooden blocks

on a tracing lathe using numerically generated patterns. Despite this

-4
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Figure 3.4 Photograph of the special cone model, including its various
spherical and hemispherical caps and terminations.
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care, the line on the surface of the cone at which the caps join with

the basic model generated scattering returns of its own (see Section

5.4.1). Note that the line where the spherical sections )I the .aps

join geometrically with the cone outline is not the same as the physical

joint between the cap and the basic model except for the 2-inch caps.

In addition to the basic shapes already mentioned, several models

were constructed to test specific conditions. These models include

half-planes, planes terminated in half-cylinders, and modifications it

the basic spherical shape. The models are described in detail in later

sections along with the corresponding experimental results. Note that

commonly available items, such as rubber bands and modeling clay, were

also used extensively to patch or distort the basic models. This

procedure permitted experiments to be interactively modified using the

guidance of current results without waiting for additional models to be

constructed.

The support mechanism for all the models proved to be a major

problem. Early experiments showed that a 3/4-inch-diameter support rod

scatters virtually as much as the 42-inch spheroid at broadside

incidence. The implied requirement for very small vertical suspensions

is evident in the trace of Figure 3.5. The scattered return (B) in the

figure is from the 28-inch spheroid at 34.3 kHz for incidence 300 from

the axial direction; the return (A) is from a length of braided fishing

line (25-pound test) hanging vertically just in front of the spheroid

nose. Problems with undesired suspension echoes are greatest for

spheroids and small spheres, whose scattered returns are very small;

however, these problems must be given careful attention when using any

A k



ft
A8

rri,1r, 3.r w ;ei . the b~ickscattertid returns from (.\)
, -)uid-t est fishing Iilne and (B) a thin prolat.

spi 'i. , r i 3rO incidence.



93

of the models described here. The suspension-echo problems can be

partially alleviated by mounting the support strings at an angle to the

vertical line in order to direct any scattered return away from the

receiver. For example, the two large returns following return (B) in

Figure 3.5 are from the fishing lines (also 25-pound test) that support

the spheroid in this manner. However, in order to provide completely

satisfactory results, a tempered steel wire, only about .007 inch in

diameter and attached to hooks countersunk completely into the models'

surface, was used for all models that this wire could support.

3.4 Techniques

The basic procedure for using pulsed sources and gated receivers in

scattering measurements is so commonly known that it requires no further

explanation. However, some discussion is important for a proper

interpretation of the results of this study. First, one must know which

property of the received signal was detected. Second, many of the major

intuitive keys described in this document were discovered by using

methods and data that are not revealed in the plots that are presented.

Thus, understanding the general procedures that were followed is useful

in order to place the results in perspective.

One important decision that must be made by all experimentalists

involves the quantitative values assigned to the returned signals. The

waveforms scattered by even simple shapes can have very strange

envelopes that vary with time as different scattering mechanisms

interact. To eliminate any confusion about what part of a received

pulse to measure, this author chose, unless otherwise specified, to use
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a pulse that was short enough to isolate all independent scattering

mechanisms and then to detect the largest return. Thus, the window on

the receiver gate was set to include all desired returns from the model,

and the gate detected and plotted the peak value of the largest signal

in that window. A particular plot may be dominated by two or more

different mechanisms at different parameter ranges if the returns

attributed to these mechanisms alternately assume the maximum value in

the window. To supplement these total results, the individual returns

were isolated in the window for separate plots whenever there were two

or more distinct returns visible. The time-delay setting of the window

was placed on a large dial so that it could be manually manipulated to

track a particular return when necessary.

Most of the final experimental plots included in this document are

traced directly from the recorded results after shifting the vertical

scale for proper normalization. Although much of the fine structure

that is visible is not significant, it does give the researcher an idea

of the variability in the data and thus the level of confidence that can

be assumed. Much of the information learned from the experiments does

not appear explicitly in the plotted results. For example, the almost

total specular dependence of the backscattering from a prolate spheroid

was indicated by the scattered pulse envelope for relatively long pulses

being virtually identical to that of the incident pulse. Careful

observation of such details from even a simple experiment was found to

be an efficient method for developing intuition about the scattering

process that could be used to target future experiments.
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One common (but somewhat unorthodox) procedure involved the author

manipulating the various elements in an experiment from inside the

chamber while observing the resulting effects on an oscilloscope placed

within view. This technique can be used, for instance, to quickly

determine the origin of observed pulses by moving objects and placing

small pieces of damping material within various possible acoustic paths

until a change is noted. The sensitivity of the data to scatterer

position can also be examined by forcing the scatterer slightly away

from its stationary position. In general, this quick-look approach,

combined with careful observation, has been used extensively to develop

intuition and understanding of the mechanisms at work. Accurate

quantitative plots of the noted effects can then be interpreted and

extrapolated more effectively.

In many cases, it was found that judicious experimental procedures

allowed useful data to be obtained in an apparently hopeless situation.

For example, Figure 4.53b (on page 183) shows the scattered returns

obtained in a search for creeping waves on a thin prolate spheroid.

Return (SP) is the specular echo, and return (CRP) is the creeping-wave

echo; all other returns are from the chamber surfaces, microphone, etc.

The spurious echoes are obviously large enough to obscure the desired

data. However, by observing which returns moved in time with the body

and by rearranging the equipment to get these returns in a relatively

clear area of the trace, accurate quantitative information has been

obtained. The improvement is, unfortunately, limited to a single

frequency per arrangement because the spurious returns generally change

when the frequency is varied. This fact is the most important reason
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why few continuous frequency-response plots are presented in this study.

Directive sources can be used to some advantage against this problem,

but a compromise is required between irradiating the entire scatterer

uniformly (to simulate farfield conditions) and not irradiating the

walls of the chamber (to minimize spurious reflections).

Finally, one should note that the data do not represent truly

farfield diffraction measurements. The transducers are not much more

than one body length from the model for the large scatterers. Thus, the

exponentially decaying field near the scatterer has decayed adequately

to meet the conditions for the acoustic farfield, and higher inverse

powers of the range are beginning to get small. However, the scattered

wavefront must travel much further to reach an essentially plane-wave

condition.
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CHAPTER 4

SMOOTH-BODY DIFFRACTION MEASUREMENTS

This chapter discusses the results of an investigation into the

scattering from smooth convex bodies and smooth bodies with small

obstructions on their surface. The physical phenomena are probably some

or the simplest of all those in the broad area of diffraction. Despite

that fact, the geometrically simple body chosen as the basis for most of

the experiments, the thin prolate spheroid, continues to prove

troublesome in both theoretical and experimental work. The shape is

useful as a model of objects from ship and airplane bodies to finite

wires. In addition, it represents a very fundamental example (i.e.,

dual radii of curvature) that must surely be understood before moving to

more complex bodies.

A variety of simple experiments were either selected or evolved for

this investigation. First, a study of both the directivity and

frequency response of the backscatter from a prolate spheroid was

carried out. This effort included tests of spheroids that were damped

at selected areas on their surface as a means of locating the origin of

the primary scattering sources. The results checked closely with simple

geometric calculations. Then, the sensitivity of the backscattering to

small changes in the smooth curvature of the spheroid was examined.

This work looked at small surface imperfections, holes in the body, and

both bands and cylinders placed on the surface of the models. The

cylinders, in particular, proved very informative, demonstrating the

effect of surface fields near the spheroid that modify the scattering by

CA
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objects in that vicinity. These experiments also showed the dramatic

change that occurs when moving from a doubly curved body to a body that

is flat in one dimension. Finally, a detailed examination of the Franz-

type creeping waves was performed. These studies verified the existence

of some scattering component that appears to circumnavigate both spheres

and spheroids. However, they also revealed additional properties that

point to a much more complicated phenomenon than traditional creeping

waves.

4.1 Geometry of the Prolate Spheroid

The prolate spheroid is a cigar-shaped body formed by rotating an

ellipse, such as that of Figure 4.1a, about its major axis. For

purposes of discussion, it is convenient to define a set of

nondimensionalized coordinates by choosing

r r1 + r2

d '(4.1)

1 d (4.2)

and as the angle of rotation about the major axis. The resulting

coordinate surfaces for a constant and nl at a given 0 are ellipses and

hyperbolas, respectively (see Figure 4.1b). A particular model with a

given length-to-width ratio corresponds to a coordinate surface ro
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Figure 4.1 Geometry used to describe prolate spheroids, including (a)
the dimensions of the ellipse of revolution and (b) the
associated orthogonal coordinate surfaces.
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where

2a a 
(_.3)

0 d (a2 b .)2 = ( 2 1 1/2

for

a (4.4)b

The value of for the 7:1 spheroids used in this study is 1.01. Note

that the definition of a particular spheroid requires both a radial-type

parameter and an interfocal distance d, whereas a single radius

parameter is sufficient to define a particular sphere.

To further standardize the spheroid parameters, a new frequency

that is normalized to the interfocal distance is commonly defined as

h kd (4.5)2

This definition leads to a frequency/radius parameter h 0 = ka, which

corresponds preciseiy to that of a sphere with the same major radius.

The nondimensional parameter h 0  is thus useful for fat (slightly

eccentric) spheroids at any incidence angle and for all spheroids at

broadside incidence, but its intuitive value for thin spheroids at or

near axial incidence is somewhat questionable. This dilemma of finding

suitable normalized parameters to describe the scattering from thin

spheroids reappears when trying to interpret many of the results of this

chapter.

A&



4.2 Backscattering from Prolate Spheroids

4.2.1 Backscattered Frequency Response from a Prolate Spheroid

One of the first experiments performed in this study involved a

determination of the frequency dependence of the backscatter from a

prolate spheroid. The data were obtained on a point-by-point basis by

reading the peak value of the received signal from an oscilloscope at

discrete settings of the frequency and incidence angle. The values are

plotted as a function of the normalized frequency h 0 in Figure 4.2.

For purposes of comparison, all amplitudes have been normalized to the

backscatter from a sphere with the same diameter as the major axis of

the spheroid (42 inches in this case). Note that the reference (sphere)

scattering value was actually obtained by first measuring the

backscattered amplitude from a 6-inch-diameter sphere and then

multiplying that result by the appropriate ratio between the desired and

measured sphere radii. Although the reference sphere is not constructed

of the same material as the spheroid model, both are essentially rigid

scatterers (refer to Section 3.3).

The results of Figure 4.2 show that the backscattered pressure at

different angles of incidence varies over a range of about 30 dB for

this 7:1 prolate spheroid in the frequency range given. The values are

reasonably uniform with respect to frequency for broadside (900) and

axial (00) incidence, but some variability is observed in the angular

range between these extremes. In particular, a dip at about h%0 . 320

is noted. There is also a rapid change in amplitude over the angular

range of 300 - 750 . The sensitivity of this data to small angular
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Figure 4.2 Backscatter versus normalized frequency from the 42-inch
prolate spheroid at several incidence angles.
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changes at any point in the angular range is actually more pronounced

than may appear. In taking these measurements, a critical alignment of

the scatterer, source, and receiver had to be maintained to insure

repeatability of the results. This requirement resulted from the highly

directional nature of the backscattered field at many incidence angles,

including both axial and broadside incidence. Note that the full extent

of the spheroid model could not be kept within the main radiation lobe

of the speaker used for these measurements.

The experience gained in gathering these data led to several

changes in technique for future experiments. First, a receiver-gate

module was designed and built to provide a virtually continuous density

of data values with respect to the parameter under consideration (either

angle or frequency). Second, an alignment procedure based on leveling

with an optical telescope was adopted. Finally, the receiver was moved

from beside the source to directly in front of it. This latter

arrangement more closely approximated the coincident transducers assumed

for backscattering, and it reduced the difficulties experienced in

trying to measure highly directive returns.

4.2.2 Backscattered Directivity from a Prolate Spheroid

In order to better analyze the angular dependence of the spheroid

backscatter, directivity curves were taken at several discrete

frequencies within the range of 130 - 260 in h&O . Three of these curves

are plotted in Figure 4.3. After the values are normalized to the

backscattered pressure from a sphere with the same major radius, the

curves are identical within experimental accuracy. The spheroid
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backscatter is seen to vary rapidly in amplitude over the angular range

of 300 - 750 but remain basically stable in the range 00 - 300. Because

the curvature of the body varies rapidly near the tip but becomes

spherical at the tip, one expects that the region just beyond the tip

governs the scattering from 300 - 750 and that the region at the tip

governs the scattering f or 00 - 300. The lack of any noticeable change

in directivity over the 2:1 frequency range indicates that the effective

high-frequency limit has been reached, even in the axial direction where

the radius of curvature at the specular point is of the order of a

wavelength-. The high sensitivity to alignment errors observed

previously (Section 4.2.1) was also noted here. In this case, symmetric

curves could only be obtained when the rotational axis of the spheroid

was accurately maintained in the same horizontal plane as the source and

receiver.

4.2.3 Backscattered Directivity from Partially Damped Spheroids

While collecting the data reported in the previous two sections, a

consistently close resemblance between the waveforms of the scattered

and incident pulses was noted that indicated a simple scattering

process. In order to gain information about the locations of the

important scattering sources, an experiment was devised to selectively

damp various portions of the spheroid surface and to compare the

backscatter results with those from a plain spheroid. The frequency

used, which corresponds to an h 0  of 223, was selected primarily to

obtain a good dynamic range in the measurement chamber because the

backacattered directivity does not vary with frequency in the range

under consideration.
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The first requirement for the damped-spheroid investigation was a

suitable absorbing material. After evaluating many samples of various

fabrics, a heavy corduroy material was selected. The backscattering

characteristics of this fabric when applied to a flat baffle about

2-feet square are plotted in Figure 4.4. All amplitudes in this figure

have been normalized to the level of the reflection from the plain

baffle at normal incidence. The weave of the fabric includes a series

of parallel ribs in one direction. These ribs generate a peak in the

backscatter results as a result of constructive interference when the

ribs are positioned parallel to the baffle's rotation axis (vertical

axis) and the proper angle is set. The peak is noted when the fabric is

mounted with the ribs facing either toward or away from the baffle.

However, no such peak is found when the ribs are rotated to any other

position. En the latter case, the corduroy material provides an

attenuation of about 7.5 dB at normal incidence, and it has only a small

additive effect on the backscatter at other angles (refer to Figure

4.4).

Using the 28-inch spheroid as the model, portions of the spheroid

were covered with a single layer of the corduroy fabric applied in

variable-width strips, starting at the center of the spheroid and

working outward in steps. Each strip was carefully fastened with

double-sided tape so that the cloth adhered tightly to the spheroid's

surface, and the ribs in the material were kept parallel to the

spheroid's major axis. The tips of the spheroid were covered with

fabric sections cut to a measured pattern and sewn together. A

photograph of the spheroid with some damping material on its surface is

shown in Figure 4.5.

A&I



1 i -

II ; I I I

0
24in

0- 56in

-10- CORDUROY WITH26IVERTICAL RIBS ~ '6i

ORDUROY WITH
HORIZONTAL
RIBS

M-20-

I-4

U

0 30 570

// -NO COVERING

. 343 kHz

-50 I I
O 30 50 70 90

INCIDENCE ANGLE G (deg)

Figure 4.4 Test of the backscattering properties of the corduroy

damping material in two orientations, as applied to a flat

rectangular baffle at 34.3 kHz.

A&



Figure 4.5 Photograph of the 28-inch prolate spheroid with a portion of
its surface covered in a corduroy damping material.



Backscattered-directivity curves were recorded for six different

percentages of the surface of the spheroid covered at both ends. The

results are summarized in the curves of Figure 4.b. The backscattering

from the damped spheroids is not as simple as that for plain spheroids

(Section 4.2.2); it now includes interference effects and some rough-

surface scattering. However, the backscattering from the totally damped

spheroid is generally about the same as that for the plain spheroid

reduced by the 7.5-dB normal-incidence damping factor. Note, in

addition, that damping only small areas near the tips of the spheroid

produces an attenuation equal to that of the totally damped spheroid

over the majority of the angular range. This result indicates that the

primary scattering component for about 70% of the range of incidence

angles originates near the illuminated tip of the spheroid.

When more than just the ends of the spheroid is covered, the

backscatter data correspond closely to the data for the end-damped case

except that attenuation is observed for a slightly larger angular range.

Figure 4.7 shows curves obtained for four different percentages of

damping. Note that the region in which all four of the damped-spheroid

plots are similar has been darkened between the extremes to reduce

clutter in the graph. In these and other cases not shown, the incidence

angle at which the plot for the damped spheroid begins to exhibit

attenuation over that of the plain spheroid corresponds approximately to

the angle at which the specular point of the spheroid falls at the edge

of the damping fabric. For example, the angles at which the edge of the

fabric in cases A - C of Figure 4.7 corresponds to the specular

reflection point are 650, 770, and 820, respectively. There is a

I
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definite relationship between these three angles and the curves of the

figure, although the influence of the damping fabric appears to extend

somewhat beyond the physical edge of the material.

When the spheroid is damped in the center instead of the ends, a

complementary effect is observed. This effect is summarized in the

curves of Figure 4.8. In this case, all of the spheroid except the very

ends (i.e., last 2 inches of the major radius) is covered with the

damping fabric, but attenuation of the backscatter is noted only for

angles of incidence greater than about 700. Furthermore, the

backscatter near axial incidence in this case is worse because of an

additional contribution from the thickness of the fabric (about X/6) at

its leading edge. Figure 4.9 shows that similar results are obtained

when a smaller portion of the spheroid's center is damped, except that

attenuation is observed for an even smaller range of angles near

broadside incidence. Once again, the transition to attenuated values is

associated with the angle at which the specular points fall near the

edge of the damping material (angular values of 650, 770, and 820 for

cases A - C of Figure 4.9). In fact, additional tests showed that dips

could be introduced in the directivity curve near any desired angle by

applying a thin fabric strip to the spheroid model at the location of

the corresponding specular point.

When interpreting the results of this section, one should keep the

type of receiving technique utilized in mind. The receiver-gate module

is set to include returns from anywhere on the spheroid, and it detects

the amplitude of the largest return in that window. Thus, when there

are two separated returns, such as from the tip of the spheroid and the
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damping-fabric edge, the largest of the two returns determines the

plotted amplitude. The curves shown in the figures have been traced

from the actual plotted results. No data smoothing or other processing

has been performed except a shift of the amplitude scale to normalize

the values to a sphere with the same major radius as the spheroid. The

slight asymmetries in the data are related primarily to the directivity

of the source used in the experiments.

4.2.4 Geometric Calculations for a Prolate Spheroid

The results of the investigations for both plain and partially

damped spheroids (Sections 4.2.2 and 4.2.3) strongly suggest that only

specular reflection is being observed. Because this scattering

mechanism is associated with tangents to the surface, it is useful to

examine the geometry of the spheroid. Refer to Figure 4.10. From the

figure, it is obvious that specular points for various spheroid

orientations cluster near the tips because of the rapid changes in

curvature there--especially in the case of thin spheroids. This

explains why damping only the tips is so effective over a wide range of

incidence angles (see Section 4.2.3). To compute the specular point, it

is convenient to express the generating ellipse of the spheroid in terms

of the parameter as

x' a cos

y b sin ,(4.6)

where 2a and 2b are the major and minor axes, respectively. Similarly,

let the field point be defined by its position on a circle of radiusr0
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as

x = r0 cos S

y - r0 sin . (.7)

00
The radius r 0 is the distance from the center of the spheroid to the

transducers. This distance can be approximated by the distance from the

center of the spheroid to the microphone. Using elementary relations

from analytic geometry for parametric curves, one can compute the

equation of the normal to the ellipse and the intersection of this

normal with the field-point circle. The resulting expression is

r 0a
sin (sin + 0-)tan 0 cos e (4.8)

Equation 4.8 relates the specular point on the ellipse given by the

angle 0 (Figure 4.10) with the angle of incidence a for a given rO. A

numerical solution of this relation was used to locate the specular

points associated with the damped-spheroid directivities presented in

Section 4.2.3.

The influence of surface curvature on the scattered field If can be

expressed in terms of geometric spreading from the surface field I as
S

(Figure 1.1)

I = s(PlP 2) (.9(P1 + s)(P 2 + s)

The values PI and p2 are the two principal radii of curvature of the

surface, and s is the distance from the surface to the field point. If



s is large, Equation 4.9 reduces to

I= Is (4.10)

where G - l/ 1P I 2 is called the Gaussian curvature. Equations 4.9 and

4.10 can be used to predict the scattering at a field point if ISis

assumed to be equal to the incident intensity (i.e., total reflection,

such as at a rigid plane baffle).

Calculation of the Gaussian curvature for a prolate spheroid using

the methods of differential geometry (see Salmon, 1927, p. 411) is

somewhat lengthy but straightforward. If the spheroid is assumed to

have its major axis oriented along the z direction in an r, ~

spherical coordinate system, the resulting expression is

a 2(sine 05s2 Cos 30sin co 0

sine60 (b2Cos 20+ a 2sin 2 0)2

All the experimental data of this chapter are recorded in a single plane

containing the major axis. Thus, one can assume that the rotation angle

0is zero, reducing the previous expression to

a
coG ~ 2 + a sne (4.12)

Note that 6 0now corresponds to the 0 of Figure 4.10.

Evaluation of Equation 4.9 with the dimensions used in some of the

spheroid experiments indicates that s is not large enough to permit the
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use of the simplified expression for large ranges (Equation 4.10).

Consequently, it is necessary to obtain the two principal radii of

curvature independently. One of these radii for all the cases under

consideration is just the radius of curvature of the ellipse, which is

easily calculated from the parametric form of the ellipse in Equation

4.6 (see, for example, Buck, 1965, p. 318):

((b cos 0)2 + (a sin )2)3/2

P ab (4.13)

The other principal radius of curvature can then be obtained from the

Gaussian curvature:

b((b cos p) + (a sin p)2)/2

P2 - a (4.14)

A purely geometric prediction of the backscattered directivity from

a spheroid was obtained by computing the specular points for a group of

incidence angles, finding the two principal radii of curvature at those

points, and substituting into Equation 4.9. The result for h 0 
= 176 is

plotted in Figure 4.11 along with the equivalent experimental curve.

Note that the geometric curve has been normalized by matching with the

backscattering from a reference sphere that has the same Gaussian

curvature. The agreement between the curves of Figure 4.11 is quite

good, and it would be even better if the geometric curve were lowered

about 2 dB relative to the experimental curve. (Accumulated

experimental errors in the normalization could account for this

discrepancy.)
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Interpretation of the agreement in the data of Figure 4.11 is not

straightforward because of the difficulty of finding a typical dimension

for a thin spheroid. At broadside incidence, the two principal radii of

curvature are 98 inches and 2 inches; and, using them as a

characteristic dimension R, one obtains kR's of 1230 and 25.

respectively. The choice of which (or what combination) of the two

dimensions to use is not obvious, but both quantities are fairly large.

Because the geometric prediction represents the high-frequency limit,

the good agreement between theory and experiment is not surprising.

However, at axial incidence, the two principal radii both become .29

inch, leading to a kR of 3.6. In this case, the single radius of

curvature is only about half of a wavelength in dimension. To add to

the confusion, theoretical computations by New, Andrews, Brill, Eisler,

and Uberall (1974) have shown that the predictions for thin spheroids

from the geometrical theory of diffraction (an extension of geometrical

optics) are valid only at very high frequencies (i.e., h% 0> 575 for a

10:1 prolate spheroid).

Figure 4.12 is a comparison of the geometric and experimental

backscatter from a larger prolate spheroid (h% = 261). In this case,

the two principal radii of curvature at broadside incidence are 147

inches and 3 inches (kR's of 1847 and 38), and the radius at the tip is

.43 inch (kR - 54). The agreement between theory and experiment is

slightly worse than the previous result (Figure 4.11) in the rapid

transition region, but it is better at both broadside and axial

incidence.
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One should remember that experimental constraints limited the

spacing between the transducers and the model, especially when using the

large (42-inch) spheroid. Thus, the geometric prediction is sensitive

to the choice of a separation distance r 0  that is used in the specular-

point calculation of Equation 4.8. The true surface normal in Figure

4.10 intersects the source-receiver axis between the source and receiver

such that the angles between the normal and both the incident (R I) and

reflected (R 2) paths are equal. The results shown in the two previous

figures assume that the normal intersects a point that is centered

between the source and receiver. A preliminary analysis of the data

showed that predictions utilizing this last approximation came as much

as 3 dB closer to the experimental curve in the regions of maximum slope

than results which assumed that the normal passed through the receiver.

To further improve the prediction, the change in total propagation path

that occurs when the specular point gets closer to the transducers was

also considered. In addition, a correction was added to compensate for

the directivity of the source, but this factor never exceeded 1 dB.

4.3 Prolate Spheroid with Small Surface Discontinuities

4.3.1 Effect of Surface Imperfections

The prolate spheroid is an interesting model because of its smooth

contours and its double variation in surface curvature. Data already

presented in this chapter have shown that this combination of factors

leads to relatively little backscattering at all incidence angles

differing from broadside incidence. In order to test the importance of
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this smooth curvature, it is useful to examine the effect of small

surface anomalies and discontinuities on the backscattered directivity.

One example of a surface anomaly can be seen in the oscilloscope

trace that is shown in Figure 3.5 (on page 92). In the group of three

returns following pulse B, the center return originates at a 3/4-inch-

diameter mounting hole cut partway through the center of the spheroid

along the minor axis of the generating ellipse. From a geometrical-

optics point of view, this hole should have no effect because the

incident field cannot "see" it. Despite this fact, a return from the

hole is clearly distinguishable; but its amplitude is about 10 dB below

the already small specular return from the spheroid (pulse B).

Consequently, the contribution of this hole to the spheroid's

backscattering can be neglected. The hole does appear to have a more

prominent effect on the local surface field, which is discussed in the

following section on cylinder obstructions (Section 4.4).

The effect of a surface anomaly in the illuminated area at the

critical tip region is illustrated in Figure 4.13. Because of repeated

use over a long period, the 28-inch wooden spheroid has acquired a dent

approximately 1/8-inch deep near one tip. Thus, the backscattered

directivities from both the good and dented noses of this model were

compared. Even though the dent is small in relation to the dimensions

of the model, it has a major effect on the backscattering at incidence

angles as large as 500. This result again shows the importance of the

surface curvature, especially the curvature in the tip region. It also

indicates that great care must be taken in constructing and handling

spheroid models, and that spheroid results should only be applied to

objects of very similar shape.
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4.3.2 Effect of Thin Band Obstructions

As a further investigation of anomalies on the surface of a

spheroid, it is interesting to examine the effect of thin bands on the

surface in a plane perpendicular to the axis of revolution. Figure 4.14

shows the result from a band of corduroy damping material about .25.k

thick placed around the 28-inch spheroid. The position and width (about

1 inch) of the band make its absorptive effect on the backscattered

directivity very small. However, the band does produce an additional

scattering component from the leading edge of the fabric, as was seen in

the previous data for damped spheroids (see Section 4.2.3). This

additional component peaks at axial incidence, the point at which the

band forms a scattering surface that is parallel to the wavefront but

also of rather small thickness. The large amplitude of the peak lends

support to the notion that the length dimension of a long thin scatterer

largely compensates for the small thickness dimension in determining the

backscattering. Recall that a similar conclusion was drawn about the

support wires used to suspend the models (see Section 3.3).

Because the illuminated surface of the band of Figure 4.14 is

parallel to the incident wavefront, a specular scattering mechanism

cannot be ruled out--even when the small thickness dimension is

considered. Thus, a smooth sloping section was carefully formed in

front of the band using a dense modeling clay, and the backscattered

directivity was measured again (see Figure 4.15). In this case, any

specular component should be directed away from the receiver. The plot

indicates a reduction of about 3 dB in the scattering by the band at

axial incidence. At other angles, however, the scattering is about the



0u

00
10

CL

S2000Cuo

_ep z~.v)xvONG+aO3



- 0N

u

to 3o

IC

01

(SP) 31-L3S)I)VS 3 NV (3183Hd



129

same as that of Figure 4.14. A different result was observed when the

damping strip was removed to leave only the clay sloping section, as is

shown in Figure 4.16. In this case, the scattering by the remaining

clay band is significantly worse than that observed from the corduroy

strip in the range of 00 - 300, apparently because of the sharp rigid

termination of the remaining section of the band. (This is similar to

results obtained with cone models discussed in Section 5.4.1.)

An investigation into the effect of the band's thickness was also

performed by wrapping various numbers of rubber bands around the surface

of the 42-inch spheroid. Figures 4.17, 4.18, and 4.19 show the results

of bands with thicknesses of .063X - .25X placed around the nose of the

spheroid. The thinnest band (.063X) has very little effect on the

backscattered directivity except for a 5 dB peak close to axial

incidence (Figure 4.17). The bands having the next two graduated

thicknesses (.13X and .19X), however, add substantially to the

backscattering by the spheroid over a wide range of incidence angles

(Figure 4.18). Finally, the thickest band (.25X) produces only a small

additional increase (Figure 4.19). The smallest band appears to be so

thin that it is partially hidden by the surface field on the spheroid;

however, the rapid increase in scattering caused by the bands seems to

have stabilized to perhaps an area-proportional increase at the

thickness of the largest band. Note that, even though the largest band

is only .25X in thickness, the resulting backscattered directivity for a

broad angular range near axial incidence is increased (over that of the

plain spheroid) to almost the level from the spheroid at broadside

incidence.
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The same group of bands was also applied to the spheroid at its

center to see if the effect of the spheroid is the same there. In

comparing these results with the previous examples of bands near the tip

of the spheroid, one must remember that the different location of the

band relative to the source and receiver can be expected to reduce the

backscattering levels by about 4.5 dB because of additional propagation

losses. Figure 4.20 shows that the thinnest center-located band (.063)

again has no additive effect on the backscatter from the spheroid except

for the peak at axial incidence. Figure 4.21 shows that the next two

sizes of bands (.13A and .19X) produce a substantial increase in the

scattering, while the thickest band (.25X) produces an asymmetric effect

that may indicate a somewhat larger increase than that observed in the

equivalent case with the bands at the spheroid tip. Note that only the

distinct portions of the curve associated with the thickest band have

been plotted to reduce clutter in the figure. Allowing some margin for

slight positioning errors with the bands, the backscatter results for

center-located and end-locat2d bands are about the same. The differing

angular ranges over which the bands increased the backscattering from

the spheroid indicate that the band return is probably present as a

distinct echo over a wide angular range; however, the echo from the band

is only evident when the amplitude of this return exceeds that of the

return from the spheroid itself. (The largest return at a given

incidence angle is detected by the receiving circuitry.)
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4.4 Prolate Spheroid with Cylinder Obstructions

The results of the previous section for bands around a prolate

spheroid illustrate, at least qualitatively, the dramatic effect that

discontinuous obstructions on the smooth surface of a spheroid can have

on the backscattered pressure. In order to get a more complete

quantitative view of the phenomena, an investigation of small cylinders

placed on a spheroid was also performed. The cylinders are useful

because both their length and diameter can be varied. They can also be

easily studied both on and off the spheroid for comparison. The

cylindrical models used in this investigation consist of a set that

includes all combinations of the lengths of 1/8, 1/'4, 1/2, 3/4, and 1

inch and the diameters of 1/8, 1/4, 1/2, and 3/4 inch. The cylinders

are all machined to high precision (+.001 inch) out of drill rod.

The cylinders were positioned in a vertical orientation along the

top of the horizontally suspended spheroid with the circular base of the

cylinders against the spheroid's surface. A line indicating the linear

distance from the center of the spheroid along the major axis was drawn

on the surface as a guide. For those cases in which the cylinders were

placed near the ends of the spheroid, the cylinders were tilted somewhat

from the vertical because of the curvature of the surface. This tilt

only affected the data for the longest cylinders, for which the

microphone was no longer centered in the main vertical-plane lobe of the

cylinder scattering pattern. A gating technique was used to separate

and record only the component scattered by the cylinder. This procedure

was straightforward for cylinder positions away from the spheroid nose

because the spheroid's backscattering component came exclusively from
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the specular point at or near the nose. For comparison, data was

recorded with the cylinders suspended at the same position without the

spheroid present. Support in these cases was provided by two fine nylon

threads (removed from a piece of braided fishing line) passed through a

tiny hole coincident with the axis of the cylinder. Again, a slight but

inconsequential tilt from the vertical was present with the longer

cylinders.

A fairly extensive investigation was performed of both monostatic

and bistatic scattering at 23 kHz from the cylinders themselves and from

the cylinders at various positions on top of the 28-inch prolate

spheroid. The data are summarized in the following sections. Unless

otherwise stated, the curves are normalized to the return from a sphere

with the same major radius as the spheroid (14 inches). Because the

wavelength at the frequency used is about .6 inch, the cylinders are all

of the order of a wavelength in dimension. Note that the backscatter

data from the 1/8-inch-diameter cylinders have been omitted because they

were too close to the background noise level to provide any useful

information. A more complete study of the cylinders themselves

(reported in Section 5.3) was also made at a slightly higher frequency.

4.4.1 Total Backscatter from Cylinders and Spheroid

Before examining the effects of the spheroid on the scattering from

cylinders, it is interesting to note the added effect of the cylinder

contributions to the pressure backscattered by the spheroid. Figure

4.22 shows the results obtained when 3/4-inch-diameter (1.3X) cylinders

with lengths of 1/4, 1/2, and 1 inch (.4X, .85X, 1.7X) were placed at
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the center of the 28-inch 7:1 spheroid. The 1/4-inch-tall cylinder has

a return that is below that of the spheroid, even at axial incidence.

Thus, this curve is the same as that from the spheroid alone. The two

larger cylinders, however, backscatter more than the spheroid for

incidence angles as large as 300. Their echo component dominates in

this angular range, increasing the total backscatter by as much as 10 dB

over that from the plain spheroid. This result is contrary to one's

initial intuition because the cylinders are so small relative to the

size of the spheroid. Furthermore, the cylinder return would increase

another 7 dB if the cylinders were placed at the illuminated tip of the

spheroid (the origin of the spheroid component) because of the smaller

propagation-path losses.

4.4.2 Effect of Cylinder Location

Figure 4.23 illustrates the effect that a spheroid oriented at

axial incidence has on the backscatter from a cylinder placed at various

positions along the spheroid surface. The abscissa of the graph is the

distance in inches from the center of the spheroid to the cylinder axis

(with positive values toward the source and receiver), measured along a

line parallel to the major axis of the spheroid. Data are presented for

cylinders 3/4-inch (1.3X) in diameter and 1/4-, 1/2-, and 1-inch (.4x,

.85X, 1.7X) in length. Note that offsets have been applied to the data

in twc of the curves to separate them on the graph.

All three cylinders of Figure 4.23 backscatter significantly more

pressure (than the cylinder alone) when placed on the spheroid forward

of a point about 4 inches behind the spheroid's center. The relative
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increase (compared to the cylinders alone) appears to be greater for the

shorter cylinders. As the cylinders are moved further away from the

illuminated tip of the spheroid, the backscatter drops below that of the

freely suspended cylinders. The downturn in the curves for the I-inch-

tall and, to some extent, the 1/2-inch-tall cylinders at positions near

the front of the spheroid is caused by the tilting of the cylinders and

their scattering pattern as they rest on the steeply curved surface.

The lines representing the backscatter from the freely suspended

cylinders are actually matched to experimental data only at the center

position along the spheroid. At other positions, they are computed

using the ratio of the distances to the measured and computed points

from the source and receiver. The validity of this approach was

verified experimentally for several of the cylinders, including the

largest and smallest (see, for example, Figure 4.24).

The differences noted in the backscatter data from one cylinder to

another are related primarily to the variation in the length of the

cylinders, as can be seen in Figure 4.25. The situation examined in

this case is identical to that of Figure 4.23 except that 1/4-inch-

diameter (.4X) cylinders were used. Results from these two cases

compare closely except for a drop of about 5 dB in the returns from the

thinner cylinders. One is therefore led to postulate the occurrence of

a partial baffling effect caused by a surface field that forms at or

near the illuminated tip of the spheroid. In other words, the intensity

of the incident field that occupies the area of the spheroid projected

toward the transducers appears to be deflected and concentrated around

the surface of the model.
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As a further investigation, the effect of cylinders on a spheroid

that is oriented for incidence 200 from the axial position was examined.

The results for 3/4-inch-diameter cylinders are shown in Figure 4.26.

In this case, the boost in the cylinders' backscatter caused by the

spheroid is still observed. However, the slope of the scattering level

in relation to the position on the spheroid is noticeably less than it

was for the case of axial incidence. The curves for cylinders on the

spheroid now almost parallel the curves for freely suspended cylinders.

Thus, a partial baffling effect is noted even for cylinders positioned

near the rear of the spheroid. Again, the corresponding results for

1/4-inch-diameter cylinders were the same except for an overall decrease

in amplitude of about 5 dB.

One other effect that appears to support the idea of a surface

phenomenon was noted during this investigation. A few results were

obtained using the 42-inch spheroid, such as the plot of Figure 4.27.

This result is similar to that obtained with the smaller (28-inch)

spheroid, and backscattered returns from both the spheroid and the

cylinder were clearly observed at all measured positions. Nevertheless,

because of the large size of this model and the close microphone

spacing, the cylinder is completely hidden (in a geometrical sense) from

the microphone for all spheroid positions behind the one at -3 inches.

It is also completely hidden from the speaker for positions behind about

-10 inches. The spheroid surface appears to direct both the incident

and reflected fields into the respective shadow regions. Note that the

reference level (0 dB) used in Figure 4.27 is the backscattering by a

14-inch cylinder instead of that by the 21-inch cylinder appropriate for
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this spheroid; this reference was chosen to match the other results of

this section. The configuration for the 28-inch spheroid 4as selected

to insure that even the smallest cylinders were not hidden except at the

most extreme rear positions on the spheroid.

4.4.3 Effect of Spheroid Incidence Angle

Another parameter that might be expected to influence the

scattering from obstructions on a spheroid is the incidence angle on the

spheroid. Figure 4.28 shows Lhe effect of this parameter on the

backscatter from 3/4-inch-diameter (1.3X) cylinders with lengths of 1/4,

1/2, and I inch (.4X, .85X, l.7T) placed on top of the 28-inch prolate

spheroid at its center. Just as was done in the previous section, the

curves for the two smaller cylinders have been offset by 5 dB id 10 dB,

respectively. An increase in the backscattered pressure over that of

the freely suspended cylinders is noted for all the cylinders at axial

incidence, and an even greater boost is noted as the incidence angle

moves from axial incidence to about 200 incidence. At larger incidence

angles, the level of the backscatter from the 1-inch cylinder on the

spheroid dips toward the corresponding level of the freely suspended

cylinder; the results from both shorter cylinders on the spheroid

maintain the relative gain in level for angles as large as 500. An

identical trend is round in the corresponding data for the 1/4-inch-

diameter (.4X) cylinders of Figure 4.29. All the curves in Figures 4.28

and 4.29 exhibit a noticeable dip (actually a smaller increase in level

over that from the cylinder alone) at axial incidence, and the relative

difference between the levels at 00 incidence and, for example, at 200
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incidence appears to increase as the length of the cylinder decreases.

This may be caused by a damping effect at axial incidence that works

against the baffling effect but adheres more closely to the spheroid

surface.

The situation changes when the cylinder is moved closer to the

front of the spheroid, as is illustrated in Figures 4.30 and 4.31. In

these cases, little or no dip is noted in the level of the backscatter

from the cylinders on the spheroid at axial incidence. The relative

difference between the levels for cylinders on and off the spheroid is

about equal to the maximum difference attained for cylinders at the

spheroid center (Figures 4.28 and 4.29) over a wide range of spheroid

incidence angles. Again, this difference tends toward zero at angles of

about 100 or larger with the 1-inch-tall cylinder only. On the

contrary, the dip in the level of backscattering noted in the previous

example at axial incidence is exaggerated when the cylinder is moved

closer to the rear of the spheroid (see Figures 4.32 and 4.33). In

fact, the backscatter at axial incidence is now less than that for the

freely suspended cylinders. At other angles, a substantial increase in

the level is noted for all but the 1-inch-tall cylinder. There are some

differences in this case between the data for the 3/4-inch-diameter

cylinders (Figure 4.32) and the data for the 1/4-inch-diameter cylinders

(Figure 4.33). However, these differences are small and may be

partially caused by the poor signal-to-noise ratio experienced in this

case with the smaller cylinders.
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4.4.4 Effect of Spheroid on Cylinder Bistatic Scattering

The final variable investigated in this study of cylinders on

spheroids is the change in the bistatic scattering pattern. Figure 4.34

shows the results obtained from three of the 3/4-inch-diametr (1.3')

cylinders, and Figure 4.35 shows the results from the corresponding

1/4-inch-diameter (.4X) cylinders. In both cases, the sound field is

incident axially on the spheroid, and the cylinders are on top of the

spheroid at its center. The scattering from the freely suspended

cylinders is uniform over the entire angular range, as would be expected

from the circular symmetry in the measurement plane. The scattering

from the cylinders on the spheroid is slightly larger, not only for

backscatter, but over most of the angular range. Note that a small dip

is indicated in the backscatter direction (00). In general, the uniform

increase in scattering by the cylinders with the spheroid present

supports the idea of an increased incident-pressure level near the

surface of the spheroid. The effective increase in level exhibited by

the tallest (1-inch) cylinder is diminished at angles greater than about

300. Finally, the results for both 3/4-inch- and 1/4-inch-diameter

cylinders are largely the same, just as was found in Section 4.4.3.

Similar effects are noted for the bistatic scattering from

cylinders on a spheroid at other incidence angles. Figure 4.36 presents

results for three 3/4-inch-diameter cylinders on a spheroid at 20 0

incidence, and Figure 4.37 gives similar results for 450 incidence on

the spheroid. The increase in the cylinder scattering provided by the

spheroid in both of these cases is somewhat larger than that noted in

the previous paragraph at axial incidence. In addition, the dip in the
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curve nas moved to approximately the angular position of the spneroid

axis (i.e., 20 0 or 450). This last observation indicates that the

physical phenomenon that causes the dip takes effect after :he pulse is

reflected by the cylinder.

4.4.5 Effect of Hole in Surface of Spheroid

"hen the investigation of cylinder obstructions on a prolate

spheroid was first performed, a significant amount of unplanned effort

went into the study of a 3/4-inch-diameter hole at the center of the

spheroid along the top. This hole served originally as part of the

support for the spheroid model. Because it had no significant effect on

the backscatter (see Section 4.3.1), the hole was left open for many of

the early experiments. The cylinder obstruction tests, however, showed

that the hole has a significant effect on the surface field in its

neighborhood.

Figure 4.38 is a sample of the results obtained for backscatter

from cylinders (3/4-inch in diameter) at positions along the top of a

prolate spheroid, both with and without the hole at the center of the

spheroid. The hole has very little effect on the data for the 1-inch-

tall cylinder. However, for both shorter cylinders, a significant dip

appears in the curve at a position just behind the hole; at positions

even further behind the hole, the curve returns approximately to the

level observed without the hole (see Figure 4.23). Then smaller

diameter cylinders are used, the effect is even more dramatic, as Figure

4.39 shows for 1/4-inch-diameter cylinders. In this last case, t:ie

is present even with the 1-inch-tall cylinder, and it exists )ver

.4!
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larger range of cylinder positions than was observed with 3/4-inch-

diameter cylinders.

The effect of the hole is not fully understood. The strong

dependence on cylinder diameter may indicate that the width of the

hole's influence is fairly narrow along the surface of the spheroid.

There is also evidence that a resonance phenomenon is involved. For

example, Figure 4.39 indicates that the hole exerts its strongest

influence with a 1/2-inch-tall cylinder. Also, Figure 4.40 shows that

the depth of the hole must be considered. Despite these indications, no

definitive relationship could be found between the dimensions of the

hole and a simple numerical factor of a wavelength. Plots of cylinder

backscatter at various spheroid incidence angles (Figures 4.41 and 4.42)

show that the influence of the hole is apparently limited to axial or

near-axial incidence. The hole's effect is definitely localized in the

nearfield, at which the pressure distribution is known to take on

complex forms. Unfortunately, this effect must apparently be considered

even when evaluating the farfield results if there is an obstruction or

other feature of the model near the hole.

4.5 distatic Scattering from Prolate Spheroids

Although this investigation focused on the backscattering at

spheroids and spheroids with projections, it is sometimes useful, at

least in an intuitive sense, to examine the field scattered in other

directions. The spheroid is interesting in this respect because its

backscatter varies significantly with the aspect angle. In addition,

the backscattered returns are known to be highly collimated in some
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directions. The observation of these phenomena provided the impetus for

a brief study of the bistatic scattering from a spheroid in a plane

containing the spheroid axis, the receiver, and the source. In all

cases, only a specular-type of echo return was observed. Note that the

origin of the scattering angle in the plots is the direction of the

backscatter, as opposed to the more common forward-scattering reference.

Figure 4.43 presents the results of the bistatic scattering by a

spheroid at axial incidence. Except for some variation near 00, the

pattern has the uniform shape expected from a sphere. This is not

unusual because the spheroid surface at the tip has two equal principal

radii of curvature just like a sphere. However, the similarity is

evident for fairly large angles. The variation near 00 is similar to

the corresponding backscattering data obtained with this same spheroid

model (see Figure 4.12); thus, it may be caused by slight imperfections

in the model itself.

Figure 4.44 gives the bistatic scattering results for the opposite

extreme of broadside incidence. The pattern consists of a single broad

lobe. This pattern is somewhat unusual because the model is over 80

wavelengths long. A flat radiator with this large extent would have a

much narrower center lobe. Despite the large eccentricity, however, the

prolate spheroid still possesses much of the same circular symmetry as

its near cousin, the sphere. In addition, the spheroid has no abrupt

edges like those found on a flat radiator.

Figures 4.45, 4.46, and 4.47 complete the picture by showing the

bistatic scattering from the spheroid at every 100 increment between the

extremes of axial and broadside incidence. There are no surprises in
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these data. As the incidence angle is increased, the pressure scattered

on the shadowed side of the spheroid decreases, while the broad lobe

seen at broadside incidence appears at the position predicted by

specular scattering considerations. The reason for the rapid shift in

the backscatter from a spheroid (noted in Section 4.2.2) for the range

of 300 - 600 is seen in Figure 4.46. In this figure, the large lobe

moves rapidly toward the 00 direction as tne incidence angle approaches

900. When interpreting these results, one should note that experimental

considerations (mostly restricted space in the measurement chamber)

limited the model-to-receiver separation. The simplicity of the effects

observed at this close spacirij. however, implies that the farfield

results are not too much different. The lack of evidence of collimated

returns is merely an indication that this effect is only observed in

planes other than the one containing the spheroid axis.

4.6 Creeping Waves

The only scattering phenomenon that has been observed with smooth

bodies in the results described in previous sections is specular

scattering. In particular, there has been no evidence of the Franz-type

creeping waves that figure prominently in many theoretical formulations.

Because of the importance of these creeping waves to diffraction theory

and because of the controversy over their existence, a highly targeted

effort was mounted to study these effects.

For the creeping-wave experiments, it was necessary to compute the

predicted time and amplitude relationships of the creeping-wave return

and then to manipulate the instrument configuration until an adequate
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signal-to-noise ratio was obtained in that time window. This

verification technique can, unfortunately, lead to self-fulfilling

predictions while missing unexpected effects; but the possib~le

difficulties were minimized as much as possible by using the knowledge

of scattering effects reported in previous sections of this chapter.

The results of the investigation generally support the concept of a

scattering component that circumnavigates the surface of the scatterer.

However, some of the observed occurrences are difficult to relate in

terms of the properties customarily assigned to creeping waves (see,

for example, Levy & Keller, 1959). In every case examined, thle

significance of the creeping-wave effects is small in comparison with

other scattering phenomena.

Note that all the data values presented in this section were

obtained by reading the height of the positive peak of the received

pulses directly from an oscilloscope. Since slight changes in waveform,

nearby returns, and background noise complicated this procedure, an

error of 2 dB or more in the amplitude of the effects may be present at

some points.

4.6.1 Creeping Waves on Smooth Spheres and Spheroids

Figure 4.48 shows an oscilloscope trace of both the incident and

backscattered pulses from a sphere at ka = 6. The waveform is limited

to a single sine-wave cycle in order to isolate the different

backscatter components in time. The specular return and a small (about

10%. of the specular return) creeping-wave return about 400 microseconds

later can be seen. Both the amplitude and time relationships between
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Figure 4.48 Oscilloscope trace of the backscattering from a sphere at
ka = 6, including (a) the incident pulse at the sphere and
(b) the specular and creeping-wave returns.

IA



177

the two backscattered returns are consistent with predictions of the

Keller theory if the creeping wave is assumed to travel at about 95% of

the wave speed in air. Note, however, that the relative amplitude of

the creeping-wave component is very small--so small that it adds only an

insignificant contribution to the total backscattered field on a decibel

scale. This relationship is also evident in Figure 4.49, which is a

plot of the experimental backscattered returns from a sphere over a

range of ka's near 6. The data are normalized to the level incident at

the center of the sphere with the sphere not present. As can be seen,

the specular returns are about 30 dB below the incident pulse, and the

creeping-wave returns are lower than the specular returns by 20 - 30 dB.

Even though theory predicts that the creeping-wave returns will be

somewhat larger for lower values of ka, their influence on

backscattering appears to be minimal in practical situations.

Figure 4.50 presents results of the specular and creeping-wave

returns from a sphere at other scattering angles. Data obtained at two

different frequencies are shown, and the angle is measured from the

forward direction. The focusing effect of the geometric caustic at 1800

is clearly evident. Once again, however, the creeping-wave return is

very small. Even at the forward scattering angle of 800, at which the

creeping wave presumably travels only a small distance on the sphere's

surface, the creeping-wave term is still 10 dB below the specular term.

Creeping waves are predicted to play a major role in the scattering

from thin prolate spheroids. Before moving to the thin spheroids of

interest in this study, however, an examination was performed with a

slightly eccentric 2:1 prolate spheroid. Figure 4.51 shows oscilloscope

. . . .. .2A&
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Figure 4.49 Plot of the specular (X) and creeping-wave (0) returns in
the backscatter from a sphere normalized to the pulse

incident on the sphere.



0 I I I I I I

Ska - 12

-10 40in 16in

-20-
Wa SPECULAR RETURNS

a. -e--30 "- ---- -

Z
z

1--40

U CREEPING RETURNS

-50-

-60 0

70 90 120 140 160 180
SCATTERING ANGLE e (deg)

Figure 4.50 Plot of the bistatic specular and creeping-wave returns
from a sphere at ka's of 6 and 12 normalized to the pulse
incident on the sphere.

A



2 ,n _

16'-in
& I U

24iin

.2 msec/div.
(a)

2- in

161 in L

4 <I

U')E

I msec/div. -
(b)

Figure 4.51 Oscilloscope trace of the backscattered specular and
creeping-wave returns from a 2:1 prolate spheroid
(h% = 13.5) at (a) axial and (b) broadside incidence.
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traces of the backscatter at both axial and broadside incidence on this

spheroid. The dimensions of the spheroid are such that h = 13.5 and

kR = 6.7 (where R is the minor radius). The creeping-wave return for

broadside incidence is just barely visible about 600 microseconds after

the specular return. At axial incidence, the creeping-wave return comes

later (about 800 microseconds after the specular return), but it is also

much stronger due to the axial focusing effect. The results at other

scattering angles for the case of axial incidence are plotted in Figure

4.52. Similar results for the sphere (ka = 6) described earlier in this

section are also included in the figure for comparison. The specular

return from the spheroid is virtually identical to that for the sphere,

but the creeping-wave return is lower (6% of the specular return). This

slightly eccentric spheroid has an interfocal distance that is close to

the diameter of the sphere used for comparison; and the spheroid's

creeping-wave return was expected to be larger than that for the sphere,

based on the size of low-frequency oscillations in the frequency-

response curves of Hickling (1958). Note that, when the spheroid model

was rotated from axial to broadside incidence, a single (backscattered)

creeping-wave return was observed that began as the axial return (Figure

4.51a) and gradually shifted in time and amplitude to the broadside

return (Figure 4.51b). No change in waveform due to multiple path

lengths on the surface of the spheroid was observed at any angle.

Attempts to observe the creeping-wave return from a 7:1 prolate

spheroid proved to be very difficult, as is shown in Figure 4.53. Here,

one sees the incident pulse and the barrage of backscattered returns

that were observed with the best instrument configuration found. This

L . ..__
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Figure 4.52 Comparison of the bistatic specular and creeping-wave
returns from a 2:1 prolate spheroid (h~ = 13.5) and a
similar sphere (ka a 6).
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Figure 4.53 Oscilloscope traces of (a) the incident pulse and (b) the
backscattered returns from a 7:1 prolate spheroid and

surrounding room reflectors at h = 38.



case is particularly difficult because the returns from this thin

spheroid at axial incidence are very small and because the creeping-wave

return follows the specular return by over 2 milliseconds. )eSpitl the

large extraneous reflections, the two desired spheroid components wcre

effectively isolated in time (see Figure 4.54). A summary ot the

component amplitudes at several scattering angles is plotted in Figure

4.55. Both the specular and creeping-wave returns are lower in

amplitude than those for the 2:1 spheroid, but the creeping-wave return

is still about 12 dB lower in amplitude than the specular return.

Theoretical results for this case indicate that larger creeping-wave

effects are expected. For example, the computations of Lauchle (1975b)

predict nulls of over 90 dB in the backscattered frequency response for

a thin (22:1) prolate spheroid; these nulls are generally thought to be

caused by interferences between specular and creeping-wave returns that

are virtually identical in level.

4.6.2 Creeping Waves on Spheres with Bands

In order to evaluate the surface-hugging properties of creeping

waves, an examination was made using spheres with bands applied to their

surfaces. For example, Figure 4.56 shows oscilloscope traces of the

backscattered specular and creeping-wave components from the sphere

(ka = 6) of Section 4.6.1 with two thicknesses of bands on its surface.

The bands are constructed of one or more rubber bands stretched around

the circumference of the sphere along the axis containing the source and

receiver. These bands effectively form a small, rigid, reflecting wall

on the surface of the sphere that intercepts all the surface rays at

some orientation.
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Figure 4.56 Oscilloscope trace of the backscattered specular ind
creeping-wave returns from a sphere at ka = 6 with bands
having thicknesses of (a) .03, and (b) .13,'\ oriented along
the source/receiver axis.



A single rubber band (.03 thick), shown in Figure 4 .56a, has

virtually no effect on the backscattered returns. However, four stacked

rubber bands (total .13X thick) do attenuate the creeping-wave component

by about 2 dB (Figure 4.56b), as well as change its waveform somewhat.

These results are expanded in the plot of Figure 4.57. The figure shows

that even two rubber bands (.07A thick) have little or no effect on

either the specular or creeping-wave returns. However, the .i3 -thick

band (four rubber bands) does attenuate the creeping-wave component over

all the angular range examined.

Figure 4.58 shows that the effect of the axial bands depends on

more than their height off the surface. The upper trace shows the

backscattered creeping-wave component attenuated to about half of the

level observed on the plain sphere by a .2A-thick band in the

source/receiver axis. However, if the sphere and band are rotated by as

little as 100, the attenuation disappears. In fact, as is shown in

Figure 4.59, the creeping-wave component is then boosted by about 3 dB

over that from the plain sphere for scattering angles as large as 70 ° •

Furthermore, this effect is not sensitive to the band's incidence angle

because a change in angle from 100 - 400 shows no change in the

backscattered returns. Note that the band still intercepts all the

surface rays, just as it did when oriented on axis. Additional tests

with partial bands have led to the conclusion that the band must be

present at the antipole (focus point) on the sphere's surface in order

for attenuation to occur. Figure 4.60 shows that an axial band that

surrounds the sphere as in Figure 4.58a with the addition of a 1/2-inch

gap at the antipole has no effect on the creeping-wave component.

Ah _ . _ _ - .- .,mu ii,•mm



I-n J 21

8 ~4' 17in
-10- IPLAI SPHERE

I.... SPHERE WITH .O70-THICK BAND
402in -- SPHERE WITH .I3X- THICKBAND~

-2 SPECULAR RETURNS

D

z

W40

(n CEPN EUN

70 90 120 140 160 180

SCATTERING ANGLE e (deg)

Figure 4.57 Bistatic specular and creeping-wave returns from a plain
sphere and a sphere with two thicknesses of rubber bands
around its surface in the source/receiver axis. (ka =6)
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Figure 4.58 Oscilloscope trace of the backscattered specular and
creeping-wave returns from a sphere at ka = 6 with a hand
oriented (a) in the source/receiver axis and (b) 100 off

the source/receiver axis.
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sphere. (ka = 6)
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Correspondingly, a 3/4-inch-long (.65',) band of .1bX thickness at thlt

antipole attenuates the creeping-wave component by about 6 dB, whilc. a

3/8-inch-long (.32A) section of this band still manages a 4-dB

attenuation relative to the level observed with the plain sphere.

Similar effects have been noted with the 2:1 spheroid at axial

incidence; the 7:1 spheroid could not be tested in this manner because

of an insufficient signal-to-noise ratio.

Circumferential bands on a sphere have an even more dramatic ettect

on the backscattered field when oriented parallel to the incident

wavefront. Figure 4.61 illustrates these results for the same two

thicknesses of b,'nds as in Figure 4.56. Even though the single axial

rubber band at the antipole had no noticeable effect on the creeping-

wave component, the same band does generate a major specular retUrn in

this perpendicular orientation (Figure 4.61a). The band's return takes

the form of two closely spaced components that are 1800 out of phase

with each other. In the case of four rubber bands (Figure 4.61b), the

bands' specular return is substantially larger than the sphere's

specular return. A summary of the data at this perpendicular

orientation of the band is presented in Figure 4.62. The major effect

of the bands' specular returns is clearly evident. In addition, one can

see that the creeping-wave component is actually increased for angles

near that for backscattering. Because the increase is not present at

wider angles, it must occur, not at the point of creeping-wave

formation, but rather at its reradiation point.
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Figure 4.62 Bistatic specular and creeping-wave components from a
sphere with various circumferential bands oriented parallel
to the incident wavef rant.
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4.6.3 Creeping Waves on Flattened Spheres

As a final test of the properties of creeping waves, a series of

experiments was performed using spheres that were cut to produce flat

surfaces on one side. This procedure was made feasible by the ready

availability of models that could be destructively modified--namely,

pool balls. The tests were designed to provide additional evidence (see

Section 4.6.2) of how closely the creeping waves follow the surface

geometry. Three different models were used, ranging from a sphere with

a slight depression to a model that was almost a hemisphere. They were

examined in four orientations, with the flat at the front, back, right,

and left as viewed from the microphone. Note that, because the single

model-support point was centered on the original sphere, the flattened

spheres did not always hang with their flat surfaces oriented at a true

vertical.

Oscilloscope traces of the backscattered specular and creeping-wave

components from the flattened sphere oriented with the flat opposite the

microphone are shown in Figure 4.63. The creeping-wave returns are

increased over those from the plain sphere without a noticeable change

in their waveform. In addition, components originating at the edges of

the flat are visible. A summary of the complete series of backscatter

data with both back and front orientations of the flat is presented in

Figures 4.64, 4.65, and 4.66. With the flat oriented toward the

microphone, the specular returns are boosted near 180 0 and reduced at

wider angles by the effect of the flat surface. The creeping-wave

component is also boosted by an amount proportional to the depth of the

flat, but only for angles in the vicinity of 1800. With the flat



321

171in

23i Iin
4 I

I 4

.1 msec/div

(a)

1 3 1 2 in

+7
I.. 7

12 in

17/Lin I -i x

23 
inL

J1 msec /div-.
(b)
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oriented on the side opposite the microphone, the creeping-wave

component is increased in amplitude even more than in the previous case.

This increase is observed over the entire angular range. Curiously,

there is no jump in the creeping-wave return near the angles at which

the flat might be expected to prematurely discharge any energy in

surface rays at its edge. Finally, Figure 4.67 showa. that the creeping-

wave component can still be attenuated in the rear-oriented flat example

by placing a small band at the focus point on the model's surface.

A similar summary of the results for left and rightt flat

orientations is plotted in Figures 4.68, 4.69, and 4.70. In these

cases, the specular return is again affected at wide angles when the

flat is on the side facing the microphone. However, only slight changes

are noted in the creeping-wave returns. Because these creeping-wave

changes ate also somewhat inconsistent, they may depend on a more

precise alignment of the flat relative to the incident wavefront than

was maintained in this experiment.

As
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CHAPTER 5

EDGE DIFFRACTION MASURFI1ENTS AND THE FREEDMWiA THEORY

The backscattering of sound by smooth bodies is dominated by simple

specular effects for wavelengths near and smaller than the scatterer

dimensions (see Section 4.2). Any other disturbance of the incident

field is apparently minimized by the smooth curvature. This fact,

coupled with observations of the dramatic effect of small obstructions

on a smooth body (Sections 4.3 and 4.4), has led to an experimental

investigation of discontinuous surface structures such as edges and

tips. This chapter presents the results of that investigation.

Three basic categories of models were examined in this part of the

study. First, scattering from the edge of plane baffles was examined,

as was the field along the shadowed side of such baffles (with both

damped and undamped surfaces). Second, small cylinders were used to

observe the interaction of specular and edge contributions. Finally, an

adaptable cone that includes both spherical caps and spherical and

hemispherical terminations (see Section 3.3) was examined. This last

model exhibits surface discontinuities of several different orders for

examination.

A specific effort was made to choose models that test the validity

of the Freedman echo-formation theory. The Freedman prediction for

specular returns from a smoothly curved body has already implicitly been

verified in Section 4.2.4; the Freedman result corresponds to the

geometrical-optics prediction multiplied by (1 + 1/4k 2a2 )1/2 , and data

in Section 4.2.4 show that geometrical optics accurately predicts the
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backscattering by smooth bodies. (Note that ka must be less than .7 for

this multiplicative factor to differ from unity by at least 10, or I

dB.) However, the Kirchhoff assumptions, on which the Freedman theory

is based, are physically plausible in the case of smooth bodies. The

assumptions are questionable in the case of abrupt surface

discontinuities. The results of this chapter indicate that the

nonspecular Freedman predictions (and, by analogy, those of physical

optics) should be used only with care.

5.1 Scattering at the Edge of a Plare Baffle

The first model examined in the edge-diffraction studies was one

end of a large rectangular baffle. The baffle was a 3 x 5-foot section

of 1/2-inch plywood suspended in the measurement chamber with its long

side vertical. The one vertical edge under study was carefully filled

with wood putty and sanded to eliminate most imperfections. It was long

enough to allow any end effects to be separated from the desired data by

time gating. This particular edge configuration is useful as a basic

indicator of all edge-type scattering phenomena. The frequency used for

the experiments was 21 kHz, giving a wavelength of .643 inch. Thus, the

edge was about 3/4X in thickness. Note that, in order to avoid

directivity problems and perturbation of the field, a 1/8-inch Bruel &

Kjaer microphone was utilized for all the measurements.

5.1.1 Angular Distribution of the Field

The first sequence of baffle experiments measured the directivity

of the field scattered by an edge. The edge of the baffle was

4
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irradiated from a direction perpendicular to the baffle, and a

microphone was swept radially about the edge at separation discances

from 6 inches to 30 inches in 4-inch steps. Figures 5.1, 5.2, and 5.3

summarize the angular results in the incident half-space. These curves

are normalized to the field at the microphone in the direct forward

direction (e0 1800) without the baffle present. The curves show a

strong return that is slightly oscillatory for angles near and below 0J0.

The amplitude then drops rapidly as 6 takes on larger positive values.

In this case, the incident pulse was elimninated by time gating.

However, the baffle generated a specular contribution at angles near and

below 00 that could not be isolated from the edge contribution at the

shortest practical pulse length (.3 milliseconds). Based on the

amplitude of the oscillations in the data, the edge contribution must be

no more than 8 - 12 dB below the specular contribution. The edge

contribution decreases for angles away from 00 and also for larger edge-

to-receiver separations. The period of the oscillations in the

backscatter curve also changes witn receiver separation because of the

different path lengths that are created between the interfering returns.

Note that the apparent decrease in received amplitude observed for large

negative angles at the widest separation (Figure 5.3) is a result of the

loudspeaker's directivity characteristics. In order to better compare

the data in the positive angular range, the curves have been plotted

together in a smoothed form in Figure 5.4. This figure shows some

evidence that the data approach a uniform level at large separation

distances.
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Figures 5.5, 5.6, and 5.7 summarize the directivity results from

the edge in the forward half-space. These curves look very similar to

the corresponding curves in the incident half-space, but they

nevertheless represent different physical effects. In the angular range

of 900 1800, the data represent the sum of an incident component and

an edge component, while the data in the shadowed region (180 0 - 2700 )

are defined to be diffraction effects. The similarity between the

curves taken in the two half-spaces indicates that the specular

reflection from the baffle on the incident side is acting approximately

like the incident pulse on the forward-scattering side.

As a further evaluation of the field diffracted by an edge, Figures

5.5 - 5.7 compare the directivities obtained with and without a damping

material applied to the shadowed surface of the baffle. The material

used is the same ribbed corduroy that was used in the damped-spheroid

experiments with the ribs oriented horizontally (see Section 4.2.3).

Little or no effect from the damping material is observed until the

microphone gets fairly close to the surface of the baffle (i.e., for

angles in the vicinity of 270 0). Note that the oscillations in Figure

5.7 at about 2200 are caused by interferences with a pulse originating

at the opposite edge of the baffle from the tested edge. Finally, the

three damped-baffle curves are shown together (in a smoothed form) in

Figure 5.8. The steep transitions observed in this figure as the shadow

boundary is crossed are very similar to those noted earlier in this

section, which occurred on the incident side of the baffle when the

reflected shadow boundajy was crossed (Figure 5.4).
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5.1.2 Field Along the Shadowed Side of the Baffle

Based on the results of the previous section, a decision was made

to investigate the propagation of both incident and edge-generated

fields along the surface of the baffle. Such results are intuitively

useful for understanding the effects of surface impedance on diffraction

phenomena. They are also important, for example, to aid the

interpretation of the Malyuzhinets (1958) stationary-phase solution.

This solution vanishes for grazing propagation when even a small amount

of absorption is present along an infinite surface.

To perform the measurements, a translating device was rigged to

scan the 1/8-inch microphone parallel to the surface of the baffle at a

fixed distance. Figure 5.9 shows the results obtained for grazing

incidence on the rigid baffle. The curves are all normalized to the

field incident at the edge, and they have been offset in 5 dB steps in

order to plot all on the same graph. As a reference, the field present

without the baffle (obtained by applying spherical spreading losses to

the field incident at the edge) is also included. The data obtained

with the baffle in place generally follow the slope of the data

determined without the baffle, but there are small shifts in the

relative levels at the smaller microphone-to-baffle separations. It is

interesting that this separation distance must approach 6 inches

(approximately 9 wavelengths) before the effect of the baffle is no

longer visible.

Figures 5.10 - 5.14 present the data obtained for the field along

the baffle when different incidence angles were used. The results for

1800 (grazing incidence) are the same as those of Figure 5.9. The
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results at the other three incidence angles were recorded in the

geometrical shadow region and are thus associated with an edge-

diffracted field. The variations in incidence angle appear to impart

constant shifts in the field amplitude that are essential~y determined

.ery near the edge. Even at the largest distance away from the baffle

(Figure 5.14), the recorded curves appear to approach a common

asymptote, determined only by the incidence angle, as the receiver moves

deeper into the shadow and away from the vicinity of the edge. The

transition region near the edge grows larger as the microphone gets

fuarther from the baffle because the pressure has more time to diffuse

inrto the shadowed region. At the larger microphone-to-baffle

separations and 1200 incidence, interferences are observed because the

incident field (as well as the edge field) reaches the microphone at

locations near the edge.

When the shadowed side of the baffle is treated with damping

material, the field along the baffle is substantially different than

that described in the previous paragraph for the rigid baffle. Figures

5.15 - 5.17 show results obtained for grazing incidence at various

microphone-to-baffle separations. The damping material is the same as

that used with the damped spheroids (see Section 4.2.3). For reference,

a smoothed plot of the corresponding plain-baffle results is included

for each case presented. A significant attenuation (over the plain-

baffle case) is noted for a separation of 1/2 inch (Figure 5.15), with

somewhat less attenuation observed at a 1-inch separation (Figure 5.16).

However, the field amplitudes are actually increased in some cases at

the larger separations of 2, 4, and 6 inches (Figure 5.17). The latter
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trend may be related to the fact that the damping material makes the

surface somewhat rougher than the surface of the plain baffle. Note

that the effect of the damping material does accumulate as tae field

propagates over a greater length of material, but this accumulation does

not begin precisely at the edge.

The attenuation caused by surface damping is greater than any

presented yet for the edge-generated fields arising from incidence at

angles of less than 1800. Figures 5.18 - 5.23 compare the data for

damped and undamped baffles at 1200 incidence and at various microphone-

to-baffle separation distances. The relative attenuation at the

1/2-inch distance (Figure 5.18) is more than double that discussed in

the previous paragraph for the corresponding grazing-incidence case.

Furthermore, this attenuation is noted at much larger distances from the

baffle. A sizeable attenuation is observed at a distance as large as 6

inches (Figure 5.21), and a slight effect is noted even at an 18-inch

distance (Figure 5.23). The boost observed at some microphone-to-baffle

distances in the grazing-incidence case has no counterpart in this

series of data. Note that, for 1200 incidence, the effect of the

damping material is noted much closer to the edge than was observed for

grazing incidence. In general, the effect of surface damping on a

diffracted field appears to extend out from the surface considerably

more than a wavelength.

The effect of different incidence angles on the attenuation of the

diffracted field along the baffle is presented in Figures 5.24 - 5.29 in

comparison with that presented previously for 1200 incidence. Note

that, while the degree of attenuation in the data does change with the

Ah:
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separation distance, the relative differences between the data at the

three angles shown (600, 900, and 1200) remains essentially the same.

Furthermore, these constant amplitude differences are the same as those

observed previously with the plain baffle (Figure 5.14). It appears

that the distribution of the diffracted field that is generated at the

edge is not sensitive to the incidence angle, except for a constant

multiplicative factor applied to the diffracted field at the moment of

its generation. This fact provides some justification for the use of an

edge diffraction factor that is not angularly dependent, for example,

with the Keller diffraction theory.

5.2 Backscattering from Rounded and Square Edges

The data to be described in this section resulted from an

investigation into the effect of edge width and shape on the field

backscattered by one edge of a large baffle. Two rectangular plywood

baffles with dimensions of 20 x 24 inches and thicknesses of 3/8 and 2

inches were constructed, in addition to a 1/8-inch-thick fiberboard

panel of the same size. One of the 24-inch edges of each baffle was cut

and treated to form a square end; the other elge was either machined or

fitted with a half-cylinder to form a rounded edge. The baffles were

then suspended in the measurement chamber with the 24-inch edges

vertical in a manner that permitted rotating the baffles about a

vertical line through their centers. For purposes of comparison, three

24-inch-long cylinders with the same diameters as the edge widths were

also obtained. Most of the data collected involved backscattered

directivities for the two types of edges (i.e., rounded and square) and

the cylinders at a frequency of 27 kHz (X - 1/2 inch).
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Figure 5.30 is a plot of the directivities obtained from the

thinnest edge (.25X). The data have been normalized to the broadside

return from a 20 x 24-inch baffle (i.e., a large flat baffle). The

curve shown for the cylinder was measured at an incidence angle of 0 0

(for the baffle) and then adjusted for the change in propagation paths

from the transducers to the baffle's edge as the baffle is rotated.

Spherical spreading on the incident path and cylindrical spreading on

the return path were assumed, but the corrections were small enough to

be insensitive to any inaccuracies in these assumptions. Note that the

returned levels from the rounded edge and the cylinder are essentially

the same at all the measured angles (i.e., at all angles for which the

edge contribution could be distinctly separated from any others). For

this edge thickness, the square edge also produces similar results.

As the edge approaches the size of the wavelength, changes are

observed in the directivity. Figure 5.31 presents the results for a

.76X-thick edge. Here, the square edge behaves quite differently from

the rounded edge. Moving to the largest edge (4 in thickness, Figure

5.32), the square edge then exhibits the lobed pattern that is expected

when interferences occur between returns from multiple scattering points

(in this case, the two parallel edges). On the contrary, the results

from the rounded edge and the corresponding cylinder are about the same

for all three thicknesses of edge. This probably results from the fact

that a specular mechanism, depending only on the local curvature at the

specular point, is dominant. The data of Figure 5.33 show that this

cylinder/rounded-edge similarity is present, at least for 0 0 incidence,

over a wide range of frequencies. The combination of the three curves
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in the plot shows good agreement over a kd (d = diameter) range of aDout

.9 to 28.

The Freedman theory provides a formal method for separating the

individual scattering features of a particular body and for predicting

how they will interact. Thus, while theoretical examination of the

specular-dominated, rounded-edge case will provide little new intuitive

information about this theory, the square-edge case is ideal for study.

A Freedman analysis was performed for the square edge, treating it as a

thin rectangular baffle (see Section 2.4.3). The results are plotted in

Figures 5.34 - 5.36. Note that the shape of the predicted directivities

agrees very well with the experimental results, even for the thinner

edges. This agreement is excellent at 00 incidence but deteriorates

somewhat as the incidence angle increases. However, the relative level

of the predicted values have had to be adjusted upward by 13 - 15 dB in

order to obtain this agreement.

There are several possible explanations for the discrepancies in

the absolute levels of the predicted and experimental data. First, as

mentioned near the beginning of this section, the data were all

normalized to the field backscattered by a large rectangular baffle.

This is probably not the best choice for a reference. A Freedman

computation of the directivity from the reference baffle indicates a

primary lobe with a 3-dB width of less than 10 and a first side lobe

about 14.5 dB lower in amplitude than the main lobe. Even though the

baffle was manipulated for the peak return, an experimental error in the

measurement of this highly directive return cannot be ruled out.

Second, a problem with the Freedman predictions at close ranges may be
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indicated. The computed values for backscatter from the edge rise in

direct proportion to the frequency, but this rise is inconsistent Wittl

the experimental data plotted in Figure 5.37. The edge in this case is

5-feet long and 1/2-inch wide. Note that little variation with

frequency is observed over a 5-to-I change in ka. This time the data

are normalized to the field incident at the edge with the edge not

present. The Freedman predictions for this edge are larger than the

scale of the figure, ranging from 4 dB at ka = I to 18 dB at ka - 5; the

predicted backscattered returns are now greater than the incident field.

Similar errors in the Freedman predictions have been observed in other

experiments in this study when the dimensions of the scatterer are equal

to or greater than the scatterer-to-microphone separation, but

reasonable predictions are obtained when the scatterer is much smaller

(see, for example, the data from small cylinders in the following

section).

5.3 Backscattering from Small Cylinders

The finite cylinder is a simple but intuitively interesting

scatterer. Its scattered field can be logically divided into two

contributions: an end component and a side component. Both of these

components generate fields similar to that of the rectangular edge

examined in the previous section, and these two fields interact to form

the final result. The side component is dependent largely on the length

of the cylinder, while the end component depends on the area of the

circular disk. For these reasons, a fairly extensive investigation into

the ba-kscatter from small cylinders was performed.

. ..4". .. . . . .... . . . A .. . ... ..
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The models were high-precision, rigid cylinders made out Df

machined drill rod. Twenty individual models in lengths _f i 8 to I

inch and diameters of 1/8 to 3/4 inch were made. For the measurements

reported in this section, the cylinders were suspended horizontally by a

nylon thread through a small hole in the center axis of the cylinder.

The thread consisted of two strands from a piece of braided fishing

line. A frequency of 27.6 kHz (X = 1/2 inch) was used for most of the

data, making all of the cylinders close to a wavelength in dimension.

Since the data in this transition region do not vary consistently as the

data in either high- or low-frequency regions, a significant portion of

the measured data have been included here. The pulse length of .8

milliseconds was relatively long for these small cylinders. Note that

the same cylinders were examined as obstructions on the surface of a

prolate spheroid (see Section 4.4).

Figures 5.38 and 5.39 present the results obtained for the

backscattered directivity from 3/4-inch-diameter cylinders in five

separate lengths from 1/8 to 1 inch. The data are normalized to the

field incident at the center of the cylinder without the cylinder

present (as are all the data of this section). For angles near axial

incidence, where the end component common to all of the cylinders can be

expected to dominate, all the curves overlap. However, for angles

greater than about 200, the influence of the different side lengths can

be seen. The number of nulls visible in the backscattering patterns

ranges from two with the 1/8-inch-long cylinder to five with the 1-inch-

long cylinder. Note that the curve for the 1/8-inch-long cylinder is

asymmetric for angles close to broadside incidence. The absolute level
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of the return in this latter case is so small that it is very sensitive

to any extraneous reflections or electrical noise.

Similar data for five cylinders of 1,2-inch diameter are presented

in Figures 5.40 and 5.41. The curves for cylinders of different Lengths

are still the same for angles within about 300 of axial incidence.

Thus, a cylinder endcap that is approximately one wavelength in diameter

is sufficient to dominate the backscattering process near axial

incidence. The relative separations between the curves in Figures 5.40

and 5.41 at broadside (900) incidence are about the same as those

described in the previous paragraph, but the absolute levels are

somewhat lower because of the smaller diameter of the cylinders. The

number of nulls visible in the curves for both the 1/8- and I-inch-long

cylinders has also changed.

Backscattered-directivity data for various cylinders of 1/4-inch

diameter are presented in Figures 5.42 and 5.43, and similar data for

various 1/8-inch-diameter cylinders are shown in Figures 5.44 and 5.45.

(The results from the 1/8-inch-long cylinders are not presented because

the returned levels were too small relative to the background noise.)

In these cases, the endcap returns no longer dominate the scattering

process (relative to the side returns) when the longer cylinders are

examined, even though the absolute levels of the broadside returns are

less than those seen earlier in this section with cylinders of larger

diameter. Note that, for the 1/8-inch-diameter cylinders, the ax.i!

return is considerably less than the broadside return e r

1/4-inch-long cylinder.
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To better examine the influence of the cylinders' lengths, some of

the previous data have been plotted again in Figures 5.46 and 5.47 with

the length of the cylinders held constant on each plot. The powerful

influence of the change in diameter is clear. Just as the endcap return

dominated the scattering near axial incidence, the side (length-

dependent) return dominates the scattering near broadside incidence for

the 1-inch-long cylinders. The side return of the 1/4-inch-long

cylinders, however, does not dominate to the same degree. The total

number of nulls present in the latter curves appears to be more strongly

influenced by the length of the cylinder than the diameter.

The Freedman theory cannot be used directly as a theoretical

comparison because it breaks down for cylinders at nonaxial incidence

(see Section 2.4.2). However, the closely related physical-optics

approach can provide some interesting informatiou. For example, Figure

5.48 is a plot of the measured data for the 3/4-inch-diameter by 1-inch-

long cylinder along with the corresponding physical-optics computation.

The agreement between theory and experiment is good at both axial and

broadside incidence, but wide discrepancies are noted at some ranges in

between these extremes. Figure 5.49 shows the reason for t'.e

discrepancies. In the figure, the side and end contributions of the

cylinder are plotted separately. At both axial and broadside incidence,

either the side or end component dominates, so that the total result

matches the physical-optics prediction reasonably well. However, at

some angles between the two extreme positions, the two scattering

components become very close in magnitude, and the resulting vector sum

is very sensitive to small errors in either component's prediction.

As
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Another comparison between theory and experiment is snown in Figure

5.50 (1/4-inch-diameter by 1-inch-long cylinder). In this case, the

length of the cylinder is much larger than the diameter, and the

resulting theoretical prediction agrees with the experimental data only

near broadside incidence. Referring to the predictions for the

individual components plotted in Figure 5.51, one can see that the end

contribution is so broad that it generates a very large overlap region

in which the side and end components interact. The resultant

interaction between the backscattering components for this cylinder is

significant enough to shift the location of the nulls in the total-

backscattering pattern.

Theoret4 cal predictions for two additional examples are given in

Figures 5.52 and 5.53. Again, the predictions are better at axial and

broadside incidence, but there is enough variability to limit any

further coaclusions. In general, while the predictions for structures

such as the rectangular strip and the disk (end of cylinder) are

surprisingly accurate on their own, the result of two or more of these

components interacting can be very wrong. The inaccuracies in the

absolute levels of the Freedman predictions noted in Section 5.2 witn

the rectangular strip were not present in the cylinder examples of this

section. All the theoretical data in this section is plotted exactly as

computed (i.e., no offset in the absolute level was necessary). Note,

however, that these cylinders probably satisfy the farfield assumptions

of the theoretical method better than any other models used in this

investigation.
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5.4 Scattering from Cones and Modified Cones

The data on scattering from edges discussed in previous sections

has been useful for developing an intuitive understanding of the

physical processes involved. However, there are other types of edges

(i.e., discontinuities in slope or curvature) that are commonly found on

three-dimensional bodies. For that reason, a special model based on a

finite cone 18 inches in length with a 200 half-angle was constructed.

The basic cone shape was chosen because it exhibits both tip and edge

diffraction, and it generates no specular returns to mask these

components. Removable caps that could substitute for the normal tip of

the cone were also constructed to change the tip into smoothly joined

spherical caps of 1/2-, 1-, and 2-inch radii and into a 2-inch

hemisphere. In addition, both a hemisphere and a smoothly joined

spherical termination were fabricated for attachment to the rear of the

cone. The resulting combinations of caps and terminations on the model

exhibit several types of first- and second-order discontinuities for

investigation. (See Section 3.3 for a more complete description of the

model.)

.The design of the cone model also considered a secondary goal: to

evaluate the predictions of the Freedman echo-formation theory. Basic

to this theory's formulation are the Kirchhoff assumptions, one of which

treats each element of a scatterer's surface as a small area radiator in

an infinite baffle. This assumption is plausible for specular returns,

but there is little reason to believe that it holds at edges. An

experimental investigation is the best method for checking the

applicability and validity of this prediction method.
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Because the Freedman method only produces predictions f or the cone

at axial incidence (see Section 2.4.5), a detailed investigation of the

frequency response of the cone at axial incidence was included in this

study. The range of frequencies used was 10 - 40 kHz, which corresponds

to a range in kh (h -height of the cone) of 83 - 335. These values are

large enough to meet the conditions for the validity of a short-

wavelength theory. In addition, experimental constraints, involving the

dynamic range in the measurement chamber and the model size, essentially

dictated the chosen frequency range. In addition to the frequency-

response data, directivity data for both scattering and backscattering

were collected at several discrete frequencies within the given range.

Most of the results shown in this section have been normalized to the

field incident at the center line about which the cone model rotated,

but additional adjustments have been made for those curves that are

compared with Freedman predictions in an attempt to better approximate

farf ield conditions.

Great care was expended in supporting and aligning the models

because of difficulties experienced in the early cone experiments of

this study. The attachment points of the supporting wires were

countersunk totally into the model's surface, and the mounting holes

were filled with clay after hanging the model. The smallest diameter

wire that could support the weight of the models was used to suspend

them. The data proved to be very sensitive to the model's alignment,

especially at axial incidence. Thus, a telescope and level were used

for a basic alignment, followed by peaking the actual acoustic return

from the rear edge of the cone at axial incidence. A pulse length of
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.28 milliseconds (slightly shorter in a few cases) was used so that most

of the individual returns could be separated. Note that the cone

rotated only about its center of mass because of the method of

suspension. The location of this center point could not be controlled,

but its approximate position was noted during each experiment. The

separation distances between the models and the source/receiver were set

at the maximum practical values, although these values were much too

small to guarantee farfield conditions.

5.4.1 General Discussion of Experimental Concerns

Before looking at the final results of the cone study, it is

interesting to examine some of the experimental difficulties and

observations. Figure 5.54 is a plot of the frequency response of all

the backscattered returns that were observed in a time window

encompassing the cone-model responses. The strongest return in all

cases, except those in which the model had either the hemispherical or

spherical terminations (not shown in this figure), came from the rear

edge of the cone. The weakest return came from the tip region. In

fact, no identifiable echo was observed from the tip above the general

noise level. The data for the tip in Figure 5.54 were obtained by

setting the receiver gate's window at the predicted time of the tip

return and plotting the background level there. In addition to the

rear-edge and tip-region returns, one or two echoes were generally

observed in the region between the physical joint at which the model's

removable caps were attached and the rear edge. The cone had no

features in this region that might generate these additional scattered
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returns. The origin of these echoes was never positively identified,

but extensive experimentation led to the conclusion that they were

either secondary returns (for example, cone to speaker to microphone) or

were coming from the support wires at a distance somewhat above the

cone's surface. Finally, a return was observed from the joint between

the removable caps and the basic model. Both the joint return and the

middle-region returns were considered extraneous to the information

desired, and any effect of these components on the final results was

carefully eliminated by time gating.

Although extraneous from the point of view of the planned

experiments, the backscattered return from the cap attachment (joint)

line provided useful intuitive information about the scattering process.

The model and its various caps were all constructed with relatively high

precision for a wooden structure. The error in the matching of the cap

and cone-body cross sections along the joint circle was never more than

1/32 inch (usually much less), which is less than .IX at the highest

frequency used. Furthermore, the matching error was always such that

the cap portion was larger in diameter, which resulted in a small shadow

at the joint rather than a small specular area. From a visual

perspective, the error in cross sectional matching appeared to be

miniscule compared to the size of the model. However, it did represent

a zeroth-order discontinuity in the surface, which is the most prominent

edge-type scattering source. Based on this reasoning, the joint region

of the cone model was carefully filled with modeling clay to form a

smooth transition between the edge of the cap and the surface of the

cone body. The results are shown in Figure 5.55. The return from the
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Figure 5.55 Frequency response of the backscattered return from the cap
joint of the the cone model, both before and after
smoothing with modeling clay.



cap joint has not been eliminated, but it has been reduced by almost 15

dB over the entire frequency range. A view of the directivitv of the

joint component at 20 kHz, both before and after smoothing the mismatch

at the joint, is presented in Figure 5.56. The original joint acts much

like the rear edge of the cone, while the directivity of the smoothed

joint exhibits both a reduced amplitude and a change in form. This

smoothing procedure was used with all the various caps and terminations

of the model. The resulting cap-joint returns were thus reduced to the

approximate level of the one just shown (see Figure 5.57). In fact, the

agreement between the returns from the joint region among all the

various caps is remarkable when one considers that each corresponding

joint mismatch is different. These results point to an extreme

sensitivity of the backscattering to small changes in the surface and

surface curvature that makes experimental studies very difficult and

that reduces the practical value of detailed considerations of the

various types of edges.

5.4.2 Backacattering at Axial Incidence

The frequency response of the cone model at axial incidence with

each of the five caps and with the combination of the normal tip and the

two terminations was examined. Theoretical predictions using the

Freedman equations derived in Sections 2.4.5 and 2.4.6 were also

computed and plotted. Because the measurements had to be made with the

transducers relatively close to the scatterer, each backscattered

comnponent was individually normalized to the field incident at the point

of its origin on the cone model. This eliminated any differences among
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the component returns that could be attributed to propagation losses

over different path lengths. In the theoretical calculations, the r2
IM

occurring in the denominator of all the terms was treated as the product

of the distances from the source and receiver to the actual scattering

feature on the model.

Figure 5.58 presents the results for backscattering obtained from

the normal cone configuration. The agreement between experimental and

theoretical data for the tip region is remarkable. Recall, however,

that no distinct echo was observed experimentally at --he tip. Thus,

this agreement could be purely coincidental. The Freedman prediction

for the rear edge, while in the general ballpark of the experimental

results, has a distinctly different frequency de,endence. In fact, the

prediction has essentially reached its high-frequency limit. Based on

the trend observed in Figure 5.58, the agreement between theory and

experiment for the rear-edge return can be expected to get worse in

frequency ranges both above and below that used for these experiments.

Changes observed in the cone model's backscattering when spherical

caps with radii of 1/2, 1, and 2 inches are smoothly joined -.o the end

of the cone are plotted in Figures 5.59 - 5.61. The rear-edge returns

are essentially the same as those from the normal cone discussed in the

previous paragraph, because this part of the model has not changed.

However, the tip return has been replaced by a specular return from the

spherical cap; and a new return from the second-derivative

discontinuity, at which the spherical cap meets the cone outline, is

predicted. The agreement between theory and experiment for the specular

components from the cap is generally good, although the 1/2- and 2-inch

-A&
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Figure 5.58 Frequency response of the backscattered returns from the
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caps appear to be too small relative to the wavelength to generate the

full amplitude of the predicted return. The slightly different trend

observed with the 1-inch cap is more than likely caused by an

imperfection in the cap itself. (This cap appears to be more blunt than

it should be.) Any experimental return from the second-derivative joint

is too close to the specular cap return to be observed separately, but

it is apparently small enough to prevent noticeable interference

oscillations in the frequency response of the cap return. This result

is consistent with the prediction but not sufficient to judge the

agreement with experiment.

Figure 5.62 shows the results obtained when the hemispherical cap

of 2-inch radius is used with the basic cone. The specular return from

the cap agrees well with the predicted value, possibly because of the

much larger spherical area compared to that of the 2-inch smoothly

joined cap. Good agreement is also noted between the experimental and

predicted returns from the joint line between the hemisphere and the

cone outline, which exhibits discontinuities in both slope and

curvature. Note that, in this case, the surface discontinuity at the

cap joint corresponds to the physical joint between the basic cone model

and the removable cap. The physical match between this particular cap

and the basic cone was probably the best of any of the removable caps.

However, given the sensitivity of the data to small imperfections in the

model at this joint (noted in Section 5.4.1), the agreement between

theory and experiment for the joint component is remarkable.

Returning to the model with a normal tip, Figure 5.63 shows what

happens when a hemisphere is attached to the rear of the cone. Since
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the only change in the model (compared to a normal cone) occurs in the

geometrical shadow, the Freedman prediction is the same as that for the

unterminated cone. However, the experimental data for the rear-edge

component have changed considerably, and the agreement between theory

and experiment is even poorer than noted previously with the normal

cone. The tip of this model configuration is the same as that for the

normal cone, but the experimental values associated with the tip region

are now larger that the predicted values. It is difficult to draw any

conclusions about this last fact, however, because there was still no

distinct echo observed from the tip.

Figure 5.64 is a plot of the results that were obtained with a

smooth spherical termination. The rear edge of the cone now exhibits

only a second-order discontinuity. The experimental results from this

edge are lower than those for the hemispherical termination, but not

nearly as low as the predicted values. For comparison, the rear-edge

returns from the unterminated, hemispherically terminated, and

spherically terminated cone are plotted in Figure 5.65. The greatest

change occurs between the unterminated and hemispherically terminated

cones--the very cases that are indistinguishable to the Freedman theory.

With the spherical termination, a return from the shadow boundary is

also predicted, but no such component was observed. (Thiq fact has been

noted by other researchers as a fault of physical-optics approaches.)

An additional return, however, was observed at some frequencies,

apparently originating at the antipole in the shadow of the spherically

terminated cone. This barely perceptible component may have been caused

by the suspension-point anchor countersunk into the model in that

vicinity.

1
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5.4.3 Scattering by a Normal Cone

Although the Freedman theory cannot provide predictions for the

backscattering from a cone at other than axial incidence, this intuitive

investigation has moved on to examine both backscattering and scattering

from a cone at other incidence angles. For example, directivities of

the backscatter from the 18-inch-long, 200-half-angle cone at

frequencies of 10, 20, 30, and 40 kHz are shown in Figures 5.66 - 5.69,

respectively. Observations made during these experiments showed that,

in the angular range of about 00 - 400, the data are dominated by the

return from the rear edge. The characteristic peak at axial incidence,

at which the edge is parallel with the incident wavefront, is seen at

all frequencies. A lobe structure similar to that associated with

extended radiating sources is also observed in the curves. As the

frequency increases, the lobes in this rear-edge pattern get closer

together, the edge contribution decreases in importance, and the overall

dynamic range increases as all reflections become more directional.

Note that the rear-edge return is really only prominent near axial

incidence. However, it still dominates over a fairly wide angular range

because there are no other contributing sources of any significance.

For angles off axial incidence, the rear-edge return appears as a

distinct echo originating at the nearest point on the illuminated

portion of the edge. In the vicinity of 700, a strong specular return

from the side of the cone dominates all others.

Some data of backscattering from the base of the cone were also

collected, and this information is summarized in Figures 5.70 - 5.73.

The model in this orientation was expected to act essentially like a
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disk or the end of a cylinder. However, unlike the cylinder data

presented in Section 5.3, the echoes from the individual edges of the

disk were resolved in time. At axial incidence (on the rear of the

cone), a strong specular return was observed. As the model was then

rotated, this single return split into components from the points along

the edge that were nearest and furthest from the microphone. This

verified that a disk does produce two distinct echoes, just as predicted

by the Freedman formulation. Additional returns between these two

echoes were observed at some incidence angles, but these were probably

caused by the mounting plate for the model's rear terminations that is

countersunk into the base of the cone model. It is interesting to note

the relative insensitivity of the backscattering data from the disk to a

change in frequency--not only the specular level, but also the width of

the axial peak and the level at angles other than axial incidence.

As an adjunct to the data already discussed, the bistatic

scattering of the 18-inch cone model was measured at frequencies of 10,

20, 30, and 40 kHz. These data are presented in Figures 5.74 - 5.77.

The prominent lobe structure near axial incidence, as well as the

remainder of the data plotted, can all be attributed to the rear edge.

The axial lobes are similar to those observed with the backscattered

data discussed in the previous paragraph. However, the widths of the

lobes are approximately doubled because, in this case, the paths

followed by the two edge returns (whose interference generates the

oscillations) are different only on the return path. It is interesting

to note that the basic shape of the bistatic curves at different

frequencies remains the same, even though the absolute levels do

decrease with increasing frequency.
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The bistatic scattering from the model at 2u0 incidence is

presented in Figures 5.78 and 5.79 for frequencies of 20 and 40 ki-z,

respectively. At all angles plotted to the right of -50 the returns

originate at the rear edge. Note that, in the 20-kHz plot (Figure

5.78), a peak in the scattered return is visible at twice the angle of

incidence. This angle is at a point that corresponds to a direct

reflection from the cone's tip. A similar peak is not observed at 40

kHz. The large peak at the left side of the figures is a specular

return reflected from the side of the cone at the normal reflection

angle. Figures 5.80 and 5.81 show what happens to the bistatic

scattering at the same two frequencies for 450 incidence. These results

are similar to the previous results taken at 200 incidence. It is now

possible, however, to see that the specular return from the side of the

cone extends over a fairly broad angular area. Looking at the data for

both 200 and 450 incidence, very little difference with respect to

frequency is noted in the scattering, except for a slightly lower

amplitude in the regions dominated by rear-edge components at the higher

frequency.

5.4.4 Scattering by Cones with Spherical and Hemispherical Caps

one method for comparing the relative influence of specular and

edge-generated scattering components is to modify the tip of a cone so

that it becomes a spherical surface. By choosing how this spherical

surface is joined to the cone outline, an additional first- or second-

order edge can also be created. It has already been mentioned (see the

beginning of Section 5.4) that four such tip modifications were
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constructed and used in this investigation: three smoothly joined

spherical tips of 1/2-, 1-, and 2-inch radii and a hemisphere of 2-inch

radius. Except for the hemisphere, the edges created at the

discontinuity between the spherical cap and the cone did not scatter

enough to be visible over the nearby specular return. However, some

interesting comparisons of specular and rear-edge returns were possible.

Figures 5.82 - 5.84 are directivity plots of the backscattering

from the cone with the three different spherical caps at 10 kHz. The

data for the 1/2-inch-capped model are essentially the same as those for

a normal cone because the rear-edge contribution dominates at all angles

except the angle of the specular region near 700. The spherical

surfaces of the other two caps, however, generate echoes that are strong

enough to dominate the shape of the curves over all the central angular

range (about +400) except right at 00. Any comparison between the cap

and rear-edge components must take into account the fact that the rear-

edge component suffers a propagation loss of about 8 dB greater than

that of the cap. (Recall that the frequency-response data for axial

incidence presented in Section 5.4.2 were compensated for the different

propagation paths, while the present data have not been compensated.)

However, it is clear that the amplitude of the edge component falls

somewhere between the amplitude of the specular components from the

1/2-inch cap (kR = 2.3) and the 1-inch cap (kR = 4.6). Note also that,

as the radius of the cap gets larger, its directivity begins to look

more and more like the uniform pattern associated with a sphere (see

Figure 5.84).
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Figure 5.85 is a plot of the backscattered directivities at 20 kHz

from the cone models with all three spherical caps, and Figures 5.86 and

5.87 present similar data at 30 and 40 kHz. At these frequencies, the

specular return from the 1/2-inch cap is strong enough to dominate the

total backscattering except for the peak at axial incidence from the

rear edge. A comparison of the absolute levels between these cases and

the 10-kHz case discussed in the previous paragraph shows that this

specular domination is caused more by the decline with increasing

frequency of the rear-edge component than any increase in the tip's

specular component. The levels of the specular returns, in fact, remain

fairly constant with frequency. The shape of the curves near axial

incidence, however, does become more uniform at higher frequencies,

probably because the smaller effective (specular) scattering area

remains on the spherical cap over a larger range of incidence angles.

Results for bistatic scattering from the three spherically capped

models at 10 kHz are presented in Figure 5.88. Just as for

backscattering, the rear-edge component dominates the curve for the

1/2-inch-capped model, but it affects the curves for the other two

models only near axial incidence. The scattered returns that are

determined by specular effects are considerably different in form from

those attributable to edge effects. The specular returns approximate

the uniform result of a sphere to a degree that is dependent on the size

of the cap's radius. As an additional comparison, a plot of the

bistatic scattering from only the cap of the 1/2-inch-capped model is

shown in Figure 5.89. This curve has roughly the same form as the

specular curves for the caps of larger diameter, but it occurs at a
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level that is too low to noticeably influence the total scattering

curve. Note that the extra activity evident in all the bistatic plots

at about 280 was caused by an extraneous return.

Similar bistatic scattering data for the three models at 20, 30,

and 40 kHz are presented in Figures 5.90 - 5.92. The trends noted at 10

kHz are also evident in this data. In addition, just as was found with

the backscattering data, the specular return from the 1/2-inch cap now

has a greater influence on the total scattering results than it tad at

10 kHz because of the decreased amplitude of the rear-edge component.

In a slight departure from the backscattering results, however, the

shape of the bistatic curves does not seem to change (i.e., become more

uniform) with increasing frequency. This last result is not

unreasonable since the incident field remains fixed along the cone axis.

Although similar at axial incidence to the 2-inch spherically

capped model, the 2-inch hemispherically capped model exhibits

noticeable differences in its directivities for both scattering and

backscattering. Figures 5.93 and 5.94 show the results of the

backscattered directivities at the four usual frequencies. The levels

near axial incidence are larger than those for the equivalent

spherically capped model primarily because of the distinct bulge in the

middle of the curves. A slight oscillatory pattern, possibly caused by

interferences of some kind, is also evident. (The cap-joint return is

not interfering because it has been effectively removed by time gating.)

Note that the bulge in the curve that was just mentioned gets noticeably

narrower as the frequency increases. This result is unusual because the

hemispherical cap is a much better model of a sphere than any of the
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spherical caps, although it does join to the cone outline in a more

abrupt manner. The bistatic scattering results at all four frequencies

for the hemispherically capped model are plotted in Figure 5.95. Again,

the levels are somewhat larger than those for the corresponding

spherically capped model, and the bistatic curves exhibit a noticeable

bulge in the center. The bulges in this case, however, appear to be

about twice as wide as those in the backscattering case.

5.4.5 Scattering by Cones with Terminations

Because the scattering by a cone is so heavily dominated by returns

from the rear edge, an examination of various modifications to this edge

is perhaps the most interesting aspect of these cone studies. The

addition of a hemispherical termination with the same radius as the base

of the cone reduces the severity of the edge considerably. It does not

affect the illuminated portion of the cone model, however, for a

reasonably large range of incidence angles near the axial direction.

Alternately, a section of a sphere that joins the rear of the cone in a

manner that preserves the slope there can be added to form a cone-

sphere. This will add considerably to the size of the model, including

an additional extension in the illuminated region. It will also move

the shadow boundary away from the location of the former rear edge and

leave a smooth surface instead of an edge at the new shadow boundary.

Both types of terminations were investigated in this study. It should

be noted, however, that the data in these cases were much more difficult

to take than any of the previously discussed cone data. The scattering

from the modified rear edges was reduced to an amplitude that was well
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below the scattered amplitude from some of the extraneous features

mentioned at the beginning of this section (such as the physical cap

joint); thus, a careful procedure of gating various returns and matching

similar plots was required to arrive at the final results. Although

data were recorded at 10, 20, 30, and 40 kHz, the data at 30 kHz were

never successfully isolated from the extraneous returns. Note that most

of the curves presented in this section are plotted separately because

they overlap in a manner that is too complicated to permit viewing on a

single plot. However, the data from the two different terminations

should be compared among themselves and with the normal cone results

shown in Section 5.4.3.

Figures 5.96 - 5.98 present the directivities of the backscatter

from the hemispherically terminated cone at frequencies of 10, 20, and

40 kHz. Comparing these results with the equivalent normal-cone data in

Figures 5.66 - 5.69, one notes that the speculai returns from the side

of the cone at angles near 700 are about the same. However, the region

near 00, at which the rear-edge return dominates the backscattering, is

much lower (about 10 dB) in amplitude. The total dynamic range is thus

larger, approaching 60 dB in the 40-kHz case. Note also that the lobe

structure near axial incidence is different. The peak-to-sidelobe level

for the terminated cone is less than that for the normal cone, and the

widths of the maxima appear to be somewhat different. This change in

the form of the edge-backscattering plots is similar to that observed

when the surface discontinuity at the physical joint of the cone model's

caps was smoothed with modeling clay (see Section 5.4.1).

I.
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The same conclusions are applicable in a slightly exaggerated Zorm

when the spherical termination (as opposed to the hemispherical

termination) is applied to the cone model. This can be seen in Figures

5.99 - 5.101. Again, the side returns for both the normal and

terminated cones are very similar except for a broadening in width, this

time near 900. At other angles, these curves are very similar to those

for the hemispherically capped cone except at axial incidence.

Especially at 10 kHz, the edge return for the cone-sphere at axial

incidence seems to be lower than that for the hemispherically terminated

cone because of a reduction in the central peak relative to the side

lobes. Assuming that these results are not invalidated by slight

discrepancies in the models, it appears that going from a slight

discontinuity in the first derivative (i.e., hemispherically terminated

cone) to one in the second derivative (i.e., cone-sphere) at the edge

reduces the backscattered return only at axial incidence. This is

contrary to Freedman's general formulation, in which reduction by an

additional factor of k is predicted when the order of the discontinuity

is increased.

The bistatic scattering results at 10, 20, and 40 kHz for both the

hemispherically and spherically terminated cones are shown in Figures

5.102 and 5.103, respectively. In the case of the hemispherical

termination, the curves are reduced in amplitude but changed very little

in shape from those for the normal cone in Figures 5.74 - 5.77. The

data obtained with the spherical termination are similar to those from

the hemispherical termination except at axial incidence, at which the

central peak is compressed at least at the lower frequencies. In

t
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general, the same conclusions given in the previous paragraph with

regard to backscattering apply here. Because of variabilities in the

data, however, it is difficult to draw any conclusions about changes in

the lobe structure of the curves.

b ... ..... ._______ . . . . . . -



CHAPTER 6

HOLOGRAPHIC 21AGING TECHNIQUES

The primary goal of this investigation is to examine the scattering

of sound by three-dimensional bodies into the farfield. However, an

adequate understanding of this physical process may require knowledge of

the acoustic field near the scattering body. For example, the

backscattering from a small cylindrical obstruction on the surface of a

spheroid is modified by the local field near the spheroid (see Section

4.4). Unfortunately, this local field is very difficult to measure

because it is distributed in a complex manner and because it is easily

distorted by any measurement sensor.

During the course of this investigation, the author was introduced

to a relatively new measurement technique called long-wavelength

acoustic imaging or holography. This procedure uses data collected in

the farfield to determine the nonevanescent components of the local

field near a radiator or scatterer. In short, by determining both the

amplitude and phase of the harmonic field scattered by an object into

the farfield, the propagating portion of the acoustic pressure (or

velocity) can be determined at the object by back propagating the field

to that location. As might be expected, there are limitations to the

procedure, as well as a considerable number of unresolved questions in

the associated theory. The method, however, has demonstrated a

remarkable ability to produce useful results despite poor experimental

conditions and violations of the theoretical assumptions. For that

reason, the author decided to experimentally investigate the usefulness

__ I AS
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of this imaging technique for diffraction studies as a part of this

thesis effort.

The following sections briefly review the efforts that were carried

out within the scope of this scattering investigation , the area of

wavefront imaging. The topics include a description of the complex

equipment developed for the study, as well as a presentation of the

results obtained to date. There is also a brief overview of the

theoretical foundations of the procedure; this overview is intended to

provide assistance in applying physical interpretations to the results.

Note that these efforts have been performed in conjunction with Cohen

(1979) and K. E. Eschenberg, and they represent an extension of earlier

work by Graham (1969) and Watson (1971).

6.1 Theoretical Basics

The technique of wavefront reconstruction or holography is based on

well-known concepts in scalar wave theory. However, both the procedures

used in processing the measured data and the interpretation of the

results are unusual enough to cause many misunderstandings. The

following discussion provides a general theoretical explanation of the

technique using the interpretations provided by pioneers in the field of

optical holography (for example, Lalor, 1968; Wolf & Shewell, 1967).

Because this author has been concerned primarily with the experimental

aspects of the measurement procedure, many important (and largely

unresolved) considerations such as finite aperture size, resolution,

multiple scatterers, etc. have been omitted from the discussion. The

reader is referred to papers by Cohen (1979) and Van Roy (1971), as well
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as the book by Goodman (1968), for a more complete treatment of

wavefront-reconstruction theory.

For purposes of this study, a hologram is a recording of the

amplitude and phase of a pressure wavefront at a large number of points

within a designated plane. The task of reconstruction is to compute the

form of that same wavefront at iome other plane, in particular, the

plane that contained the original source (object plane). This

reconstruction procedure is derived by first computing the recorded

wavefront in terms of the source distribution (forward propagation), and

then inverting the equation to effectively backward propagate the wave

to its source.

The forward-propagation solution is determined from the Helmholtz-

Huyghens radiation integral (Skudrzyk, 1971, p. 492; also see Appendix

A):

C aV(Ro) )G(JR H - R0 )

V(R) = J G(I R- R ( ) - v(R 0 )( ) dS

S

(6.1)

This expression relates the velocity potential V at any field point RH

to both the velocity potential and its normal derivative at points R0 on

a surface S. The surface S must be a closed boundary surrounding a

sourceless region containing the field point. The function G is the

Green's function of the form

G(r) exp(-ikr)) + G0 (r) , (6.2)
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where r is measured from an origin inside the surface S and where G 0 (r)

is any function analytic within S. Both derivatives are taken with

respect to the outward normal of the surface S. The orientation of the

source point, field point, and integration surface to be considered is

shown in Figure 6.1. Note that the source point (R S) and the field

point (R. H1 or hologram point) are separated by the planar surface of

integration S 0 (object plane). This surface is closed around the field

point by a hemisphere whose radius tends to infinity.

Equation 6.1 can be simplified in two ways. First, the integral

over the infinite hemisphere contributes nothing to the solution because

both the pressure field and the Green's function tend to zero at

infinity. Thus, this portion of the integral can be ignored. Second,

the analytic part of the Green's function [G 0 (r)] can be chosen in a

manner that makes the total Green's function zero at all points on the

boundary S 0. The function becomes

G(r) = (exp(-ikr).J rexp(-ikr')) (6.3)

where r' -IR' - Rol and R' is a point located symmetrically across the

plane S 0 from R H at an equal distance from the plane (see Figure 6.1).

Note that it is not necessary for this Green's function to have a

physical meaning as long as the function satisfies the mathematical

requirements that have been stated. However, if a physical

interpretation is desired, the reader should consider the equivalent

reciprocal case, which has a field point at R 0and two source points at

Rand N. If the Green's function chosen in Equation 6.3 is used in

Equation 6.1, the first term under the integral sign is eliminated,
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leaving

V(R) = v (R 0 )( ( R )dS

so

This equation can be expressed in terms of the physical quantity of

pressure by use of the relation

p = pO(-) 3 iw 0 v , (6.5)
0 (-t) W

where p 0 is the density of the medium and w is the angular frequency.

The result is

PCRd -J p(R)(' - Rol) )dSo (6.6)

So

The choice of how to solve Equation 6.6 normally depends on the

form of p(R ). However, because S is a rectangular area, a more

general solution is possible. Letting G (r) represent the normaln

derivative of the Green's function, D - z0 - zH ' and expressing all

coordinates in a cartesian system, Equation 6.6 becomes

P(Xoy 0 9 Z) = -f P(xo'Yozo)Gn (xH - XO'YH - Y0 9D)dx0 dy0

So

(6.7)

This integral is in the form of a two-dimensional convolution in x0 and

'Ii - - - -
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Y., which in shorthand notation can be written as

p(R,,) p (R0) * Gn(r) (6.8)

Using the properties of Fourier transforms and the convolution theorem

(see, for example, Skudrzyk, 1971, pp. 99-100), Equation 6.8 can be

written in frequency space as

(kxk yZH ) - 0(k x kyZ Gn(kx,k ,D) (6.9)

The symbol "-" denotes the two-dimensional spatial Fourier transform

defined by the equations

a(kx'ky) {{ a(x,y)ei(kx x+k yY)dxdy (6.10)

and

/ 12 ' (kkyei(kxX+kyy)dk dk (6.11)
alx,y) = (i) jjx ya(6.11)

The frequency-space parameters k and k (sometimes called spatialx y

frequencies) are spatial wave numbers (with units of I/length) defined

by the Fourier transform. They can be related to an effective wave

number K in the plane by

K - (k 2 + k 2)1/2 (6.12)

NotL that K is essentially a parameter of the Fourier transform that can
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assume any required value. When propagation 3f this planar two-

dimensional field is considered, a new wave number k is also needed.

However, the wave numbers in the plane are now related to the wave

number k in the acoustic medium by

2 21/2 2 2 2)1/2
k - (K + kz (k +k +k ) (6.13)

As is shown later, this last relationship is of profound significance to

the reconstruction process.

Equation 6.9 is a purely algebraic expression. Thus, it can easily

be inverted to show that

P(k , z 1

P(kx,k yz 0 ) = 'ky'ZH) (6.14)
SGn(kx,kyD)

This equation (or its inverse two-dimensional transform) is the

fundamental relation on which wavefront reconstruction is based. Notice

that it gives the pressure field at an assumed planar source

distribution (object plane) as a function of the pressure measured on a

field plane (hologram plane). The function I/G n(kx,k ,D) can be

identified as the frequency-domain backward-propagation function.

In order to study the characteristics of the process of wavefront

reconstruction, it is necessary to find the functional form of the

backward propagator (i.e., G ). Refer again to Figure 6.1. For sourcen

points RS on the surface S0  (as assumed in the reconstruction process),

the magnitudes of r and r' in the Green's function (Equation 6.3) are

equal, and the normal derivatives of the two terms in the Green's
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function differ only in sign. Thus,

G(r) = ikr
G (r) = 3n 2 -nk ) (6.15)

Noting that the surface normal is in the direction of the z coordinate,

the transform of the Green's function becomes

2 d 1 , ))ei (kxXo+kyYo)dxodvo (6.16)

where = (kx,k ,Z). To simplify this discussion, assume that the

origin of the coordinates is at the field point (RH = 0) so that

r - R0  - (x2 + y 2 + z 2 )1/2 (6.17)

It is now convenient to transform both the space and frequency

coordinates from a rectangular to a polar coordinate system using

K - (k x 2 + k y2)1/2 , k = K cos , ky K sin (6.18)

and

R - (x 2 + y 2 ) 1 / 2  x = R cos e y - R sin e

(6.19)

Substituting these relations into the integral expression for the

frequency-domain Green's function (Equation 6.16) and exchanging the

-A p. . . .. . . . .,
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order of differentiation and integration, one obtains

27 ik(R2+Z 2 ) 1/2
2 ! red- (I

nO0 dz~ j j 21/2
O 47r(R + z02)

-iKR(cos c cos 8+sin sin i)* e

* RdedR (6.20)

Next, a simple trigometric identity simplifies the relation to

27i 2+Z02) /2

(r0) 1 d iz (R2 2 i/2 cos (8-) RdedRn O0~d JZo)2~ /

(6.21)

The integral over e represents a Bessel function of order zero

(Skudrzyk, 1971, p. 697). Thus, Equation 6.21 can be written as

_ O e-ik(R2+z02 )1/2

n ( 0 dz ) 2 11/ )J0 (KR)RdR (6.22)

0 (R+ z 0 )

This integral is in the form of a Hankel transform, and the result is

given by Erdelyi (1954, p. 9) as

d -i -iZo k2-K 2)1/2
G (r ) - dzd {((k 2  e K2/}(6.23)
n 0 d a (k -K) K 2 1

Finally, the derivative with respect to the z coordinate can be applied
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to yield

Gn(r) = -e-iZo(kI-K 2)1/2  (6.24)

The function of interest here, the backward propagator, is thus given by

1 = -eizo(k -K 1 /2  (6.25)

n(r- 0)

The backward-propagation function given by Equation 6.25 takes the

form of the phase delay of a plane wave traveling in the z direction, as

can be seen by using the relationship between k and K (Equation 6.13) to

show that

1 = -ei zOkz (6.26)

Gn(r 0 )

This last fact explains why the function is called a propagation

function, and it leads to an interesting physical interpretation. The

wavefront-reconstruction process generates an inverse-propagation

solution expressed by Equation 6.14 and Figure 6.1. The pressure field

measured at the hologram plane is used to constr.c an equivalent

distribution of (monopole) sources in the object plane that will produce

the measured field. Furthermore, the constructed source distribution is

always equivalent to the field at the hologram plane after propagation

back to the object plane. Note that the geometrical relationship

between the hologram plane and the object plane is not fixed. Once the

field is known in the hologram plane, it can be backward propagated to
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any other object plane. The information provided by wavefront

reconstruction is particularly useful when the object plane is

coincident with (or an infinitesimal distance in front of) the radiating

and/or diffracting surface that generated the measured field. Hlowever,

the result is mathematically valid for an object plane anywhere between

the hologram plane and the closest source, with the only requirement

being that the region inside the entire closed surface S (refer to

Figure 6.1) contain no sources. Thus, by measuring both the amplitude

and phase of a harmonic field (or the harmonic components of any field)

at the hologram plane, the complete three-dimensional structure of this

field (reconstructed one plane at a time) has been determined.

The actual propagation process involved with wavefront

reconstruction requires more explanation. The pressure-field

representation in the basic reconstruction equation (Equation 6.14) is a

two-dimensional spatial transform of the pressure in the hologram.

Thus, the distribution of the field in this plane is described

mathematically as a continuous sum of two-dimensional plane waves of

various amplitudes and frequencies. In a manner analogous to the

description of a time waveform by a frequency spectrum, Fourier-

transform theory shows that any functional distribution that is well-

behaved at infinity can be represented by an equivalent frequency-domain

spectrum of adequate bandwidth. Thus, a spectrum of three-dimensional

plane waves whose traces on both the hologram and object planes sum to

produce the respective field distributions can be used to represent the

backward propagation. In addition, the individual spectral waves must

physically propagate in the medium between the hiologram and object
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planes at a characteristic sound speed. The resulting bandwidth

limitation on the backward-propagated field is evident in the two forms

of the backward propagator (Equation 6.25):

J-e-izokz for K < k

Gn (r0)  -ez0kz for K > k (6.27)

In this relation, k = (k2 - K2)1/2 . When the effective wave number in

z

the hologram plane (K) is less than that in the medium (k), the spectral

waves whose traces match the corresponding components in the hologram

are backward propagated by inverting their phase. However, in the

opposite case (K > k), the spectral waves must be exponentially

amplified to account for the rapid exponential decrease that occurs when

high-spatial-frequency components near the object attempt to radiate

into the surrounding medium. In a real experiment, any exponentially

attenuated components will rapidly drop below the background noise

level, making it impractical to boost them by the required amount.

Consequently, a modified backward propagator that substitutes an

exponential attenuation for K > k is normally used. In this way, the

field is reconstructed as if the higher-spatial-frequency components

never existed, and a resolution limitation close to the wavelength in

the acoustic medium is introduced. This field resulting from the latter

reconstruction procedure is very useful, however, for many types of

studies because only the components that radiate into the farfield are

imaged.

The resolution limitation (or advantage) of wavefront

reconstruction is an inherent part of the physical process of wave
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propagation, and it makes the interpretation of holographic results

difficult. In addition, there are variations from the ideal situation

presented in the previous discussion that result from practical

considerations. For example, a real hologram plane is finite in

dimension. This limitation degrades the image somewhat due to

diffraction effects at the edges of the hologram, and it results in the

hologram intercepting only a portion of the sound radiated or scattered

by the structure under investigation. However, the reconstruction

process proceeds blindly according to the simple conditions assumed

during the derivation. Thus, the process predicts a directed source

distribution, i.e., a distribution of sources that correctly reproduces

the field originally measured at the hologram but may generate a

different field at points outside the hologram. The same type of result

occurs when examining either multiple objects at different z distances

or an extended, three-dimensional object. The reconstruction is

technically invalid for all but the nearest object because additional

sources appear inside the surface of integration (recall the surface S

in Figure 6.1) in the other cases. The result observed, however, can be

described as showing the sources in the current reconstruction plane "in

focus" and the others as "out-of-focus" noise terms.

Detailed treatment of these theoretical questions, as well as

others relating to the process of wavef rant reconstruction, is beyond

the scope of this study. The technique is interesting, however, because

previous investigators have shown that it produces very useful results,

even under less than ideal experimental conditions that violate some of

the underlying assumptions (Graham, 1969; Watson, 1971). The wavefront-
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reconstruction process has been used in this investigation f or two

reasons. First, it was desired to experimentally evaluate the

applicability and usefulness of this imaging technique in studies of

scattering. Second, an effort was made to use this technique to provide

additional clues about the physical diffraction mechanisms associated

with the nearfield of a scatterer.

6.2 Experimental Apparatus

The studies of wavefront-reconstruction techniques performed in

this investigation are an extension of work done by Graham (1969) and

Watson (1972) at this laboratory. These and other researchers

dmonstrated the fundamental utility of the procedures for highlighting

primary sources of farfield sound on radiating and scattering bodies.

However, their results indicated that more accurate techniques (where

the "more" was undefined) would be required to obtain reliable

quantitative information and to relate the data directly to physical

parameters. Consequently, early in the planning stages of this study,

it was decided to devise a measurement capability with sufficient

versatility to implement suggested experimental improvements and to

adapt to new changes in technique that might be required. As a result

of this decision, a considerable amount of effort was devoted to

development of the required apparatus and processing techniques over a

span of several years. However, the effort has been justified as the

completed system has easily adapted to required methodology changes that

were not even considered at the beginning.

.A
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The experimental requirements can be divided into three broad

steps: (1) measurement of the field scattered or radiated by an object

over an entire rectangular plane, (2) reconstruction of the field at the

object by backward propagation, and (3) examination and analysis of the

results. The most important component of the field to be measured is,

unfortunately, the most difficult to measure: the phase. The importance

of the phase information is dramatically illustrated by Watson's (1971)

excellent results, which were derived solely from measurements of the

phase expressed with a binary resolution (i.e., in phase or out of

phase). Traditional holographic methods used the interference between

the field of the scattering object and a reference field to indicate the

phase; then, they tapped the Fourier-transform abilities of lenses to

reconstruct the image. For this study, however, the amplitude and phase

were measured directly. This measurement is feasible at the long

wavelengths used, and it allows the elimination of several spurious

interference terms that would otherwise be present in the

reconstruction. In order to study scattering effects, the equipment was

designed to operate with sine-wave pulses of short duration. The

microphone scanning system was required to accurately and repeatably

position sensors at up to 256 sampling positions along both vertical and

horizontal axes (the finest sampling used by Watson in his

investigations). Finally, both the reconstruction process and the

interpretation of the results were performed or. a digital computer.

This allowed the emulation and study of any real or imagined (wi:hin

practical limits) propagation process, as well as the utilization of

available digital processing techniques.
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A block diagram of the data-acquisition and control system that was

developed to meet the specified requirements is shown in Figure 6.2. In

order to implement the required versatility of the system, most of the

cmponent devices are operated under the control of a programmable

microprocessor. Budget limitations ruled out the acquisition of a

complete minicomputer. Thus, a basic microprocessor board (Texas

Instruments TM990/100M) was purchased, and the resident monitor program

that came with this board was modified to permit edit, compile, load,

and file-storage operations to be performed by The Pennsylvania State

University's central computer system via a dial-up phone link. Because

the average hologram contains over 16,000 data values (128 x 128 grid

locations) and the phone link is relatively slow (1200 baud), the phone

link was not used to transmit the recorded data. Instead, an old

9-track digital tape drive was acquired, repaired, and interfaced to the

microprocessor for data storage.

When recording holograms, the acoustic pressure is sampled over an

entire rectangular area, approximately 73 x 88 inches in dimension, by

the microphone scanning system shown in Figure 6.3. Four small electret

microphones (Knowles BT-1759) move up and down on carriages that are

attached to vertical rods via slide bearings and are interconnected via

a cable and pulley arrangement. (Four additional microphones can be

attached to the other ends of the carriage assemblies to record field

data originating on the other side of the scanner.) In addition, the

entire assembly moves horizontally on tracks on the floor. Both the

vertical and horizontal motion are precisely driven, with proper

acceleration and deceleration, by stepper motors under the control of
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Figure 6.3 Photograph of the microphone scanning system used for
holographic measurements.
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the microprocessor. Four microphones are used instead or one for the

simple purpose of reducing the required scanning time by a factor ot 4.

Note that this particular scanning system has evolved through several

modifications of previous designs, and it has several faults that should

be corrected in any new designs. In particular, the uneven notion

delivered by the vertical-axis stepper motor induces a severe vibration

into the cable used in the drive system. Also, a structure with fewer

or smaller support members that can distort the acoustic field would be

desirable, but the focusing effect of the reconstruction process helps

to eliminate spurious reflections from the scanner.

The microphone signals are preamplified, filtered, and then passed

to a special amplitude/phase detection subsystem. The latter subsystem

deserves special attention because it provides the capability to operate

with pulses. A block diagram of its major functional elements is

presented in Figure 6.4. In operation, the reference signal (which is

continuous, not pulsed) is squared off at its zero crossings and passed

to a phase-locked loop circuit acting as a frequency multiplier. This

circuit creates a signal that corresponds to the reference signal

multiplied by 720 (or any other desired count); the multiplied signal

is, in turn, digitally counted in synchronization with the reference

signal. As a result, a running tally of the phase delay from the start

of the reference cycle is available in half-degree increments. Sometime

after a cycle of the reference signal begins, the unknown signal will

begin its next cycle (defined as a zero crossing of positive slope).

This point is precisely detected by a trigger circuit; and the running

phase tally at that point is saved in a holding register, providing a
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digital count of the phase delay in the range of 0 - 720 half-degrees.

Simultaneously, a separate counter, which is set to count down from 180,

is started. When this second counter reaches zero, the sinusoid is at

its maximum value (900); and this peak value is read through an analog-

to-digital convertor into another holding register. Both the amplitude

and phase of the unknown are now available in digital form.

Because no commercial device could be found, this very fast

amplitude/phase detector was designed and constructed as part of this

thesis effort. The actual prototype contains four sets of trigger

circuits and holding registers so that all four microphone signals from

the scanner can be processed simultaneously. The detection procedure

takes a maximum of 2-1/4 cycles of the input wave, plus about 50

microseconds (including initial synchronization with the reference

signal). The detection device operates with half-degree resolution over

a frequency range of about I - 20 kllz. Because of the sophisticated

nature of the device's operation and the variable quality of input

signals, extensive error-checking circuitry was included to look for

missing- or multiple-phase detections, phase-locked-loop tracking

errors, etc.

The timing of the hologram recording process is handled by the

microprocessor program. This function includes generating a pulse (or

continuous wave) of preset length and starting the amplitude/phase

detection during a central portion of the desired echo from the

scatterer. The data values, which are normally recorded on a 128 x 128

grid, are transferred to a large IBM computer for numerical

reconstruction at any selected plane. The program for the
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reconstruction task was developed by Cohen (1979), and it implements the

modified backward-propagation procedure [which attenuates high spatial

frequencies (see Section 6.1)] using fast-Fourier-transform algorithms.

The resulting grid of reconstruction values (also containing 128 x 128

elements) is analyzed interactively using a high-performance graphics

system (Adage AGT-30) at the The Pennsylvania State University's

Computation Center. The graphics system and supporting software (also

developed as part of this project) allow a user to interactively

manipulate and analyze the pressure plotted as a three-dimensional

surface in a reconstructed plane. This capability proved extremely

valuable because of the large quantity of data in each reconstruction

and because of the complex nature of many of the reconstructions. The

plots shown in the following section are all projected views of the

reconstructed-pressure surface that have been selected through

interactive analysis to emphasize individual points about the data.

6.3 Experimental Results

This section presents holographic reconstructions of the scattered

sound field near the surface of four basic bodies: a square baffle, a

sphere, a prolate spheroid, and a cone. The results are best described

as preliminary because they were selected primarily to test the

performance of the measurement technique. As a group, the experiments

have done a good job of bringing out many of the advantages and

limitations of the procedure. However, they have not provided as much

information about the nearfield of three-dimensional scatterers as had

been hoped. Note that all the reconstructions are plotted as three-

Af
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dimensional surfaces in the object (scatterer) plane, with height above

the plane representing the reconstructed pressure amplitude. All data

points are normalized to the peak value in each plot.

6.3.1 Backscattering at a Flat Baffle

The previous holographic work at this laboratory (Graham, 1969;

Watson, 1971) examined the sound field radiated by plates driven into

continuous mechanical vibration. Thus, the earliest scattering

experiments were performed using flat baffles as scatterers and

continuously driven sources. For example, Figure 6.5 is a

reconstruction of a 12-inch square baffle positioned parallel to the

microphone scanner at a separation distance of 77-5/8 inches. The

incident wave is produced by a horn tweeter that is directed at the

baffle fi.- just in front of the scanner. The outline of the baffle is

distinguishable in the upper-right portion of the figure, but there is

also a fairly strong return just below and to the left of the baffle.

Because there were no other objects near the baffle, the extra

returns indicated in Figure 6.5 were presumed to be an out-of-focus

contribution from a table about 3 feet behind the baffle. In order to

test this hypothesis, the baffle experiment was repeated using a pulsed

source and the shortest allowable pulse length. The resulting

reconstruction is shown in Figure 6.6. In this case, the field on the

baffle is the only visible component. Note that the form of this field

is different from that in the previous reconstruction, indicating that

the field in the previous example had been distorted by out-of-focus

terms. Holography is known to have very good directivity in the plane
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Figure 6.5 Reconstruction of a 12-inch square baffle at 8 kHz taken
with a continuous scurce.
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Figure 6.6 Reconstruction of a 12-inch square baffle at 8 kHz taken
with a pulsed source.
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parallel to the hologram (as is evident in the figure), and it also

exhiibits focusing effects along the z axis (line perpendicular to the

hologram). However, the resolution provided in the z axis is apparently

very poor. For this reason, all future holograms were taken using a

pulsed source.

The reconstruction of Figure 6.6 indicates that the scattered field

on a baffle is more prominent near the edges. This result is very

similar to the data obtained from vibrating plates, but it was not

expected in this case. Consequently, a thorough checkout of the

recording procedure was carried out immediately after the results were

discovered. This checkout showed that a random background was being

created in the hologram by the measurement system. Whenever the

detection device had tried three times unsuccessfully to obtain a valid

phase reading on a low-level signal, the system accepted the last

erroneous reading. After modifying the electronics to force a zero

amplitude in this situation, the experiment was repeated to obtain the

result shown in Figure 6.7. The reconstruction now shows a fairly

uniform pressure distribution over the surface of the baffle. The

latter result is the correct one; in the previous result, random phase

errors were introducing spurious high-spatial-frequency components that

accentuated the reconstructed field at the edges of the baffle. In

contrast, other studies showed that amplitude errors in the hologram

caused by calibration problems have little effect on the

reconstructions.
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Figure 6.7 Reconstruction of a 12-inch square baffle at 8 kkiz after
modifying the phase-error electronics.
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6.3.2 Backscattering at Spheres of Different Sizes

The next series of tests examined the scattering from two spheres

with diameters of 2-1/4 and 6 inches that were suspended with their

centers in the same object plane. A reconstruction of the surface

scattering at 17 kHz is shown in Figure 6.8. The reconstruction shows a

much broader return for the larger sphere, indicating that the surface

field is fairly uniform over most of the illuminated area (similar to

the baffle discussed in the previous section). Because the relative

amplitudes of the data in the figure are distorted by the viewing angle

of the plot, a side view of the same reconstruction is shown in Figure

6.9. The relative ratio between the two peaks in the reconstruction is

about 2.1, while the expected ratio between the backscattering by the

two spheres is about 2.7. However, if a more accurate estimate is made

by reconstructing each sphere at its leading surface (specular point),

the amplitude ratio of the reconstructed components from the spheres

matches the expected result very closely. This agreement gives one some

confidence that the amplitudes, at least among different portions of the

sam reconstruction, are accurate. (This is not true of many

holographic techniques.)

As a further test of the focusing effect of the imaging technique,

the smaller sphere used in the previous experiment was moved into

another object plane about 13 inches behind the first object plane.

Figure 6.10 shows the resulting reconstruction in the plane of the

closest sphere, and Figure 6.11 shows the result in the plane of the

furthest sphere. In both cases, a well-defined component is observed at

the location of the sphere that is in the corresponding reconstruction
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Figure 6.8 Reconstruction at 17 kHz of two spheres of different
diameters in the same object plane.
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Figure 6.9 Reconstruction (side view) at 17 kI~z of two spheres of
different diameters in the same object plane.
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Figure 6.10 Reconstruction (side view) at 17 kHz of two unequal spheres
in different object planes, as viewed in the plane of the

closest sphere.
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Figure 6.11 Reconstruction (side view) at 17 kllz of two unequal spheres
in different planes, as viewed in the plane of the furthest
sphere.
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plane. In addition, an out-of-focus component from the other sphere is

noted in Figure 6.11. The out-of-focus component in Figure 6.10 is

apparently too small to be visible. Note that, in comparing the latter

two figures, one must remember that the data are rescaled to the local

maximum in each plot. Thus, the peak values in the two plots actually

differ by an absolute ratio of 3.5. A comparison of the reconstructions

of the larger sphere in the two figures gives one an idea of the meaning

of the term "out of focus." When this condition exists, the

reconstructed field is lower in amplitude, broader in area, and has no

prominent peaks. When separated from other returns, this out-of-focus

component is easily found by visual inspection; and Powers and Mueller

(1974) indicate that the slope of the field can be used as a numerical

indicator of the degree of focus achieved in some cases.

6.3.3 Backscattering at a Prolate Spheroid

Having developed some intuitive feel for the results of a wavefront

reconstruction, attention next turned to extended, three-dimensional

scatterers. The first model examined was the 42-inch-long, 7:1 prolate

spheroid. Figure 6.12 shows the reconstruction obtained for broadside

incidence in the plane of the leading side. Just as was noted in both

of the previous sections, the field on the spheroid is evenly

distributed over most of the surface, although somewhat lower values are

noted near the ends. The corresponding reconstruction for axial

incidence is shown in Figure 6.13 (viewed in the plane of the tip). In

this case, the reconstructed field is broader than the physical

dimensions of the tip, which may indicate the size of the surface field
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Figure 6.12 Reconstruction at 17 kcz from a 7:1 prolate spheroid for
broadside incidence.
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Figure 6.13 Reconstruction at 17 kItz from a 7:1 prolate spheroid at
axial incidence, viewed in the plane of the tip.
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or may indicate out-of-focus contributions from points further down the

length of the model. For the axial incidence case, a reconstruction

that was made at the center of the spheroid is shown in Figure 6.14. In

this result, there are no individual components evident above the

general background level. The final experiment in this series involved

a small cylinder that was centered on top of the axially directed

spheroid. In the resulting reconstructions, a cylinder contribution is

observed in the center plane, and some additional contributions to the

background level at the tip are also noted.

6.3.4 Backscattering at a Finite Cone

The other three-dimensional scatterer examined was the 18-inch cone

model (described in Section 3.3), with either the usual pointed tip or a

spherical cap of 2-inch radius. The reconstruction of the pointed-tip

cone was examined both at the tip (Figure 6.15) and at the rear edge

(Figure 6.16). The component indicated at the rear edge is a circle

along the outline of the base, as might be expected. This

reconstruction also has a peak in the center, which may be an out-of-

focus component. At the tip, a reasonably well-defined component is

also evident. However, because this tip component is almost as large as

the rear component in absolute magnitude, it must be an out-of-focus

term. (Data of Section 5.4.2 show that the tip return is much smaller

than the rear-edge return.) This last result shows that reconstructions

must be interpreted very carefully. Turning to the spherically capped

cone, the reconstructions at the cap and at the rear edge are shown in

Figures 6.17 and 6.18, respectively. A distinct specular return is
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Figure 6.14 Reconstruction at 17 kHz from a 7:1 prolate spheroid at
axial incidence, viewed in the plane at the spheroid
center.
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Figure 6.15 Reconstruction at 17 kHz from a finite cone, viewed in the
plane of the tip.
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Figure 6.16 Reconstruction at 17 kHz from a finite cone, viewed in the
plane of the rear edge.
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Figure 6.17 Reconstruction at 17 kHz from a spherically capped cone,
viewed in the plane of the tip.
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Figure 6.18 Reconstruction at 17 kHz from a spherically capped cone,
viewed in the plane of the rear edge.
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noted at the cap. At the rear edge, however, the expected ring-shaped

return is not observed. One must conclude that the rear-edge (ring)

return is being masked by an out-of-focus component from the cap.

6.4 General Conclusions About the Technique

The results described in Section 6.3 have pointed out both good and

bad features of the technique of wavefront reconstruction. There is at

least some evidence that accurate quantitative values of the equivalent

surface fields on a scatterer can be obtained. However, the lack of

resolution in the z direction is a serious problem for studies of three-

dimensional scatterers. It is possible that either a more accurate

pulse system or the addition of several frequencies can aid in the

solution of this problem. Only more work will tell. There are also

unresolved questions about the interpretation of the equivalent surface

fields. However, when the difficulties encountered in trying to measure

surface fields by traditional sensing methods are considered, the

imaging technique shows enough merit to justify more studies.
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CHAPTER 7

SUM4MARY AND CONCLUSIONS

The previous chapters have summarized in detail the individual

results of a fairly extensive series of scattering experiments. The

primary purpose of these experiments has been to examine the physical

diffraction mechanisms that are important in modern diffraction

theories. In addition, both theoretical and experimental analyses of

the Freedman theory of echo formation have been included to supplement

the sparse amount of information in the literature about this theory.

Because of the large amount of data presented, it is easy to lose sight

of the many similarities and relationships among the data from various

experiments. This is unfortunate because the results are probably most

valuable when taken as a whole in order to develop one's physical

intuition. Consequently, this chapter places an overall perspective on

the results of the study by describing the major conclusions derived by

the author. Wherever possible, brief references to other sections of

this thesis are included to direct the reader to additional pertinent

information. Note, however, that it will generally be necessary to

refer to several different experiments to evaluate all the information

relating to any individual conclusion.

The backscattering from a prolate spheroid appears to be governed

almost exclusively by specular effects (see Section 4.2). The

directivity results of the spheroid match simple geometric predictions

very closely, even thoL.a the specular points on the spheroid for much

of the angular range fall near a tip of relatively small radius (Section
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4.2.4). There is evidence, though, that these results are very

sensitive to small changes in the model's shape that are caused either

by surface anomalies (Section 4.3.1) or small obstructions on the

surface (Sections 4.3.2 and 4.4.1). Thus, it appears that predictions

based only on specular effects will work reasonably well (although the

predicted amplitudes may be a little too large); this is true even for

bodies whose radii of curvature are relatively small in relation to a

wavelength, if the scattering 3urface is smoothly curved. This

conclusion is reinforced by results from modified cones having spherical

surfaces at the tip (Section 5.4.2). Although they possess only a small

fraction of the total surface area of a sphere at their tip, the cones

with smoothly joined spherical caps exhibit very uniform scattering

patterns that are similar in both directivity and absolute level to

those of a sphere. In contrast, the cone with a hemispherical cap,

which possesses a much larger spherical area, exhibits distinct bulges

in both its backacattered and bistatic directivity results (Section

5.4.4). This last result may be attributed to the more abrupt

transition between the sphere and cone outlines that is present with the

hemispherical cap. Note that the relatively small spacing between the

models and the transducers in the experiments may have exaggerated all

the relationships described in this paragraph.

The curved symmetry of the thin prolate spheroid also points out

the fundamental differences between the scattering from flat and

slightly curved bodies. Although the long dimension of the thin

spheroid is almost flat (at least near the center), the body continues

to behave more like a sphere than a cylinder. For example, at broadside
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incidence, the bistatic scattering pattern for the spheroid is very

broad in the plane of the spheroid's major axis (Section 4.5), while a

cylinder of much smaller dimensions exhibits prominent lobes (similar to

the backscatter data of Section 5.3). This result is certainly related

to the fact that the surface of the cylinder is terminated at both ends

by abrupt edges. However, the strong geometrical similarity between the

sphere and spheroid (described in Section 4.1) should be noted as an

additional consideration. In fact, the Gaussian curvature of the

spheroid at its specular point for broadside incidence is exactly the

same as the Gaussian curvature of a sphere with the same major radius;

and this relation is always true despite the large differences in the

principal radii of curvature between a thin spheroid and an equivalent

sphere. As a corollary to the conclusion about bistatic scattering, the

backscatter from the thin spheroid is also relatively smooth (Section

4.2.2). In this case, the specular points shift rapidly to the sphere-

like tip region as the body is rotated from broadside incidence to axial

incidence. Because the radii of curvature at the specular point change

rapidly as the incidence angle is varied, it is difficult to describe

the backscattering by a thin spheroid in terms of a characteristic

dimension (see Section 4.2.4).

Several of the smooth-body studies produced evidence of surface

fields, but the properties of the fields differ from those normally

attributed to so-called creeping waves. A component that closely

matches the Franz-type creeping waves (see Deppermann & Franz, 1954) is

observed for the simple case of a sphere (Section 4.6.1), but this

return depends only loosely on the shape of the model's surface. For
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example, a band placed around the surface of a sphere to block the

creeping-wave component has no effect unless the band passes through the

antipole (focus point) on the rear side of the sphere (Section 4.6.2).

In addition, the amplitude of the creeping-wave component is increased

at all measured scattering angles by cutting a flat surface into one

side of the sphere (Section 4.6.3). This increase is observed even when

the flattened portion is oriented toward the transducers, an orientation

in which the assumed path of the creeping waves around the rear of the

body is unchanged from that on the unmodified sphere. These results are

best explained as a continuous manifestation of the diffraction model

that postulates a diffusion of sound energy into the shadow at a shadow

boundary (described in Malyughinets, 1959).

Other surface effects, possibly related to the creeping waves, were

observed with small obstructions on the prolate spheroid. For example,

the scattering by small cylinders is enhanced when the cylinders are

placed on the spheroid surface (Section 4.4.2). This baffle-like effect

appears to be localized to an area located no more than one wavelength

from the surface; and it is formed (in fact, is most prominent) at the

illuminated tip of the spheroid, which is different than the formation

point postulated for creeping waves. Although this second surface

phenomenon exhibits certain properties only at axial incidence, the

basic baffle effect is evident for incidence angles on the spheroid as

large as 500 from axial incidence (Section 4.4.3).

The studies of edges on rectangular baffles led to two major

conclusions. First, the shape of an edge (i.e., flat or round) must be

considered in scattering predictions, even when the thickness of the
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edge is no more than A/4. A comparison of backscartering by rounded and

by square edges shows distinct differences for edges of this small

dimension (Section 5.2). In addition, there is evidence that the

angular distribution of the field scattered by a small but finite edge

is very directive (Section 5.1.1). The second major conclusion relates

to the effect of surface absorption on a field propagating at the

grazing angle. The results show that a significant attenuation of the

grazing field is observed. This attenuation is present not only near

the baffle but out to a distance of several wavelengths when the field

is generated by edge diffraction (i.e., on the shadowed side of a

baffle, as in Section 5.1.2). A surprisingly large attenuation of the

grazing field is also observed when the source field is incident at the

grazing angle (Section 5.1.2). Thus, there is evidence that surface

fields on fairly long bodies can be effectively attenuated by a small

amount of surface absorption.

The most important intuitive conclusion drawn from the studies of

cone models is the importance of scattering from edges that represent a

discontinuity in the cross section of a surface. The prominence of the

rear-edge contribution from a finite cone is well known. However, the

results of this study show that the backscattering by a similar surface

discontinuity of less than 10% of the wavelength (at the points where

the removable caps attach to the cone model) has an amplitude within a

few decibels of that from the rear edge (Section 5.4.1). Thus, the

existence of a surface discontinuity appears to be more important as a

determinant of scattering levels than is the actual size of the

discontinuity. As a corollary to this conclusion, the scattering from
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an abrupt edge can be significantly reduced (10 - 15 dB) by making the

edge discontinuous only in slope, as was demonstrated by smoothing the

surface of the cone model at the cap joint (Section 5.4.1) and by

attaching a hemisphere to the rear of the cone (Section 5.4.2). Some

additional improvement is also gained by reducing the discontinuity at

the edge from first to second order (i.e., using the spherical cone

termination instead of the hemispherical termination), but the change in

scattering level that occurs in this case is not as great as the change

observed in going from the zero-order to the first-order discontinuity

(Section 5.4.2).

The various types of edges that were examined on the cone models

also exhibit interesting differences in their directivities for both

backscattering and bistatic scattering. First, when the cone is

illuminated from the front, the directivity of the backscatter from the

rear edge exhibits the distinctly lobed pattern that is characteristic

of the interference between two similar returns (at least for angles

where returns from both edges are visible, as in Section 5.4.3).

However, when the cone is illuminated from the rear (i.e., onto the

circular base), only a single broad peak is noted (Section 5.4.3). In

the latter case, there is a strong specular contribution from the disk

itself that dominates any edge contributions for angles near axial

incidence. Then, as the cone is rotated, the specular component

decreases in amplitude and appears to split into returns from each edge;

but the two edge returns are separated enough in time that they do not

interfere. Second, when the rear edge of the cone is modified with

either the hemispherical or spherical termination, the shape of the
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directivity changes in a manner that reduces the difference between the

central peak and the sidelobes (Section 5.4.5). As a consequence, the

reduction in scattering associated with the change in the order of

discontinuity at the edge (see Section 5.4.2) is observed only for axial

incidence. Note that the directivity of the bistatic scattering for the

rear edge of the cone-sphere is essentially uniform in level (it does

oscillate slightly)--in stark contrast to that from the normal cone,

which exhibits a large central peak (see Section 5.4.5).

At the current stage of development, it is difficult to draw any

firm conclusions from the experimental results obtained by wavefront

reconstruction. It is tempting, for example, to compare the

distribution of the surface fields on the spheroid (Section 6.3.3) and

the square baffle (Section 6.3.1) and then to look for a result that

explains the differences observed between their farfield scattering

patterns. However, sufficient understanding of the method's details has

not been developed (see Section 6.4). The wavefront-reconstruction

technique, in general, looks very promising if the problems of

resolutior in the z axis can be adequately resolved.

Finally, a few conclusions can be drawn about the Freedman theory.

First, the theoretical analysis (Section 2.2) shows that it is a variant

solution of physical optics rather than an asymptotic theory as

described by Freedman (1962a). Second, just as with physical optics,

the Freedman method appears to provide good predictions (at least at

large ranges) for two-dimensional objects, such as rectangular edges, at

angles not too far from the surface normal (Section 5.2). However, for

three-dimensional objects, where more than one surface may contribute to

..qm m m m u m .m m m m
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the scattering, serious problems are noted. The cylinder examples of

Section 5.3 indicate that the problems found in the theory for three-

dimensional scatterers are caused by the sensitivity of the vector sum

of multiple scattering components to small errors in the predictions of

the individual components. Third, problems with the Freedman theory are

also noted at abrupt surface discontinuities where the assumptions of

the theory are questionable (Section 5.4.2). For example, the

prediction for the backscattering by the rear edge of a cone exhibits

the wrong frequency dependence. In addition, the theory fails to

account for the nature of the edge at the cone's shadow boundary, which

the experimental results show to be very important. Fourth, there is

evidence that the Freedman predictions for first- and second-order edges

and tips on the surface of a cone are relatively accurate, but the

results are inconclusive on this point because of the extreme

sensitivity of the data to minor imperfections in the model (see Section

5.4.1) and/or because of marginal signal-to-noise ratios in the

experiments.

From a qualitative point of view, the Freedman predictions are

generally very good; that is, the backscattered returns generally do

originate where predicted, even on three-dimensional bodies. The only

major problem that has been encountered occurs at the shadow boundary

(final range point of the body). The Freedman theory always predicts a

scattering component from this boundary, but none is experimentally

observed if the surface of the scatterer is smooth at the boundary (such

as occurs, for example, with the spheroid or the cone-sphere). It is

possible to argue that the quantitative successes of the Freedman theory
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are tied very strongly to its ability to predict the locations of

scattering components. Because the predicted locations of these

components are accurate, their phases are also correct; and holography

studies (for example, Watson, 1971) have shown that the phase carries

the dominant information about the basic form of the scattering pattern,

such as the locations of maxima and minima.

When examined in detail, the previous conclusions are merely an

indication of the complexity of the scattering process. There is

evidence that small variations of simple scatterers can significantly

affect the scattering results. Thus, from a practical oint of view,

one must be very careful in using simple examples to model related

sha.pes, and realistic expectations on the accuracy of the results should

be assumed. On the other hand, there are enough similarities in the

results to postulate that adequate predictions can be made if sufficient

insight into the physical mechanisms can be developed and formulated

into prediction methods. This study represents only a small

contribution toward that goal. It is hoped, however, that the effort

has demonstrated the usefulness of exploratory experimentation as a

means for both understanding the physical phenomena and helping to

direct the development of better techniques for predicting the

scattering from three-dimensional bodies.
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APPENDIX A

DERIVATION OF THE KIRCHOFF SCATTERING INTEGRAL

For purposes of notation in the following derivation, an underscore

represents a vector (r); the same letter symbol without an underscore

represents the vector's magnitude (r - ir); and a caret represents the

corresponding unit vector (r = r/r).

Let p(r') be a solution of the Helmholtz equation (Morse &

Feshbach, 1953, pp. 804-807) at a field point r' in a region containing

the source distribution f(r'):

(72 + k2 )p(r') - f(r') (A.1)

Also, let G(r,r') be a solution of the Helmholtz equation with a unit

point source located at r:

(72 + k2)G(r,r') = 6(r' - r) (A.2)

The function 6(r'-r) is the standard delta function, and the V2 operator

is applied to the primed coordinate system. The function G(r,r') is

frequently called the free-space Green's function, and it is given as

(Skudrzyk, 1971, pp. 641-642)

G(r,r') . exp(-ikR)
4TR (A.3)

where R = r - r' and R - Ir' - ri. If Equation A.1 is multiplied by

G(r,r'), Equation A.2 is multiplied by p(r'), and the results of these

AMt
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two operations are subtracted, one obtains

9

p(r')V'G(r,r') - G(r,r')72p(r') = p(r')S(r' - r) - G(r,r').(r')

(A.4)

Since the delta function is only defined in terms of an integration,

this last equation is now integrated over a volume V that contains the

source distribution f(r') (i.e., a region where Equations A.1 and A.2

are valid) to obtain

I{J (p(r')V 2G(r,r') - G(r,r')7 2p(r'))dV

V

p(r) - r G(r,r')f(r')dV .(A.5)

V

Finally, Green's theorem (Morse & Feshbach, 1953, pp. 803-804) is used

to convert the volume integral into the corresponding surface integral.

Letting S represent the closed surface bounding the volume V and n

represent the outward unit normal vector, one obtains

p(r) - (p(r')VG(r,r') - G(r,r')_p(r')) nidS

S

+ JJJ G(r,r')f(r')dV (A.6)

V

This equation relates the pressure at a field point to both the pressure

and its normal de.ivative on the enclosing surface S and also the

pressure due to the specified source distribution. The point r must be



inside S in order for the integration of the delta function in Equation

A.4 to yield a nonzero value. Note that Equation A.6 takes the form of

an integral equation with the pressure appearing on both sides of the

equal sign. This fact is very important when sources of energy outside

the surface of integration must be considered.

Equation A.6 can now be applied to the case of interest, that of a

rigid body subjected to an incident field from a single point source at

location r (Figure A.1). The surface S is chosen as the sum of the
-2

scatterer surface So and the surface of a sphere of infinite radius S.,

and the integration volume thus includes all of space outside the

scatterer. The source distribution f(r) is taat of a point source of

strength P at r2 which is radiating into a space angle of 47r:

f(r') - 47P6(r' - L2 )  (A.7)

On the surface of the scatterer, the normal velocity is zero (Neumann

boundary condition), and thus

n-p = 0 on S (A.8)

Using Equation A.8 to simplify the integral over the scatterer surface

(does not apply for S ) and substituting Equation A.7 for the source
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Figure A.1 Geometry showing a rigid body subjected to an incident
acoustic wave from a point source at r2, as viewed at a

field point at r.
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distribution, one obtains

p(r) = jj (p(r')VG(r,r') - G(r,r')Vp(r')) ndS.

S

+ j (p(r'),G(r,r')) • dS 0  P exp(-iklE,

2 - rlS
O0

(A.9)

It is now convenient to decompose the field pressure into incident

and scattered components denoted as

p(r) = Pi(r) + p s(r) , (A.10)

and then to examine the form of each of these components. Since all

energy comes from the point source at r2 , the incicent field is given by

exp(-ikIr 2 -r)
Pi (r) = (A.11)I2 - ri

Note that this corresponds exactly to the last term on the right side of

Equation A.9, and thus that equation reduces to

Ps(r) = If (p(r')vG(r,r') - G(r,r')V.p(r')) ndS.

S

+ {J (P(r')VG(rr')) " dS 0  (A.12)

So

Although only the scattered pressure remains on the left side of the
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equation, the total pressure still appears under both integral signs on

the right side. At large distances from the scatterer, the scattered

field will assume the characteristics of spherical divergence, and thus

can be represented as

ps(r) - (P)f(9,p)exp(-ikr) , (A.13)

where f(e,) is sometimes called the form function. Note that this

field is similar to the incident field in dependence on range.

Turning now to the integral in Equation A.12 over S,., it is first

necessary to investigate the asymptotic forms of the functions G(r,r')

and dS,,. In the limit as r' -00, then R-r' . In addition,

r{d(exp (-ikR) /47R }
_G(r,r') dR

R -ik
(--- (1))exp(-ikR)

R

ft -ik
- --)( )exp(-ikR)

- -ikRG(r,r') (A.14)

Because S, is a sphere, one can say that

R2dS~ - sin ededp = R da (A.15)

I



Substituting these asymptotic relations into the integral, one obtains

I i - G(r,r')p(r') + ikRpv(r')G(r,r')j - nR-da

S

[-RG(r,r')1R(7P(r') + a"(''-:da (A.16)

S

In the asymptotic limit, the function R G(r,r') is bounded. Thus, L,

will tend to zero if

Lim R:p(r') + r'p(r')) - - 0 (A.17)

This condition is known as the Soimerfeld radiation condition (Skudrzyk,

1971, pp. 493-494), and it must be satisfied in order for this

derivation to be valid. Because both the incident and scattered

cmponents of the pressure vary as 1/R, it is reasonable to assume that

the radiation condition does hold if even a small amount of damping is

included. Having shown that the integral over S. vanishes, Equation

A.12 is reduced to

Ps(r) = p(r')7G(r,r'))- ndS (A.18)

S
0

Thus, for a rigid body, the scattered field is related solely to the

total pressure evaluated on the surface of the scatterer. If sources of

energy outside the surface of integration had been allowed in the

previous derivation, the result would have been identical to Equation
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A.18. In that case, the integral over S. would have exactly reproduced

the incident field from the external sources, and this term would have

canceled with the incident component on the left side of Equation A.9.

Equation A.18 is actually a specific form of the Helmholtz-Huyghens

radiation integral (Skudrzyk, 1971, pp. 49 1-4 96), with no approximations

on the field having been made. To evaluate this relation for the case

of interest, the Kirchhoff assumptions must be applied. Thus, it will

be assumed (1) that every point on the illuminated portion of the

scatterer surface SI acts as if it were a plane in an infinite rigid

baffle and (2) that the pressure on the shadowed portions of the

scatterer surface is identically zero. The surface pressure can be

obtained by examining the scattering from a rigid plane. Figure A.2

illustrates the case of an incident wave of form p i(r) = P exp(-ik.r)

reflected from a plane boundary in a form p (r) - R exp(-ik'-r). At the

boundary, the total pressure given by p(r) - p Cr) + p r() is subject to

the Neumann boundary condition of Equation A.8. Thus,

-ik •nP exp(-ik r r) - ik' • nR exp(-ik' • r) - 0 . (A.19)

In order to examine the relationships determined by Equation A.19, it is

helpful to remove the vector representations by assuming that the point

of reflection is at the origin of a rectangular coordinate system.

Equation A.19 becomes (see Figure A.2)

-ik cos 8 P exp(-ikx cos e - iky sin 8)

-ik' cos B'R exp(-ik'x cos 0' - ik'y sin 8') - 0

(A.20)

,__ _ _
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x

Figuire A-2 Scattering of a plane wave at a plane boundary.
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It is clear that k = k' because the frequency of the wave does not

change on reflection. In addition, because Equation A.20 must hold at

the boundary (x - 0) for all values of y, one finds that - a'. This

observation, when applied to Equation A.20, leads further to the fact

that R - P. The incident and reflected rays are thus identical in form

and

p(r) = pi(r) + pr(r )

- P exp(-ik • r) + P exp(-ik - r)

= 2 pi(r) (A.21)

For the case presented in Chapter 2, that of backscattering from a rigid

body, the incident pressure is

Pi(r') P exp(ikr') (A.22)
= r'

The scalar notation can now be used because the source is a point source

at the origin of the coordinate system. For backscattering, the

receiver is also at the source location, making r = 0. Substituting

this information into Equation A.18, one obtains

Ps - 'J(2P exp(-ikr'))ikr' exp(-ikr'))

SI

(A.23)

If I is taken as the angle between the incident radius vector r' and the
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surface normal n, the result finally becomes

SI
-0) iP jj (exp (-i2kr') cs d S

-iP) rr exp-i2kr) cs dS (A.24)
r,

Note that this is the same equation as that obtained by more heuristic

means in Section 2.1 (Equation 2.6).

.1 ....... , _- _- =



-415

AP2PENDIX B

RLECEIVER-GATE MODULE

The primary function of the receiver-gate module is to measure the!

highest peak of all received signals within a preset time window and :o

hold that value until another measurement can be made. The slowly

varying output of this device is then used to obtain a smooth plot of

any desired component that can be isolated within the window. The

actual unit designed for this project provides a useful dynamic range of

at least 40 dB over frequencies of 1 - 40 kllz. Just as with any

commercial product, it must be used with caution to insure that the data

provided are what is actually desired.

Figure B-1 is a schematic of the first two stages of the receiver-

gate module. The incoming signal is first amplified by a factor of 10

to bring it up to a level of about 5 volts. The input preamplifier

stage is also designed to blank any signals that occur before the

measurement window in order to prevent strong incident pulses from

overdriving the following stages. The amplified signal is then passed

through an active, full-wave rectifier whose final stage includes a

small amount of signal averaging. The averaging is used to smooth out

any undesirable transients before they reach the peak detector. The

averaging time constant is set by substitution of the 450-picofarad

capacitor, and the symmaetry of the rectifier is adjusted via the

5000-ohm potentiometer. Note that the HA-2535 operational amplifier is

an extremely fast device because it must swing a large voltage range at

twice the input frequency. This device can be replaced by a less
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expensive operational amplifier if the maximum (40 kHz) frequency used

for this study is not required.

The rectified signal is passed to a peak detector (Figure 3.2).

This stage is reset prior to the time window and then holds the peak

value attained until reset again. The peak voltage is converted to a

decibel scale by the 8048 temperature-compensated logarithmic convertor.

The frequency of the peak-detected signal is low enough to be accurately

tracked by this device. Finally, near the end of the time window, the

logarithmic peak value is sampled and held by the final stage until the

next time window.

The logic circuits that provide the timing signals are shown in

Figure B.3. There are three simple monostable multivibrators

implemented in CMOS logic and connected in series. The delay from the

initial sync pulse to the window, the width of the window, and the width

of the sampling time at the end of the window are all adjustable. A

separate monitor output, which can be used to observe the relation

between the three time settings and the received signal by means of an

oscilloscope, is also provided. Note that the feedback capacitors in

the multivibrators must be modified if times significantly different

from those used in this study are desired.

Finally, a list of the full identifiers of all semiconductor

components is shown in Table B.I. All the operational amplifiers are

operated at voltages of +15 volts. The CMOS logic is driven from the

same +15 volt power supply. Resistors can have a 1/4-watt power rating.

Note that new components that could improve the performance of the

module and/or reduce its cost have become available since its design.

I _ _
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Table B.1

List of Semiconductor Components
Used in the Receiver-Gate Module

Signal Diode 1N914

Zener Diode IN758A (10 volts)

Operational Amplifier IA739

Operational Amplifier HA-2535

Operational Amplifier NE536T

Operational Amplifier LM308D

Analog Gate IH501IPE

Log Amplifier 8048BC

CMOS NOR Gate CD4001A

CMOS NAND Gate CD4011A

AM_
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In particular, the operational amplifiers in most cases could be

replaced with bipolar-FET-type devices such as the LF356N.
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